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Key features of RODOS 
Real-time On-line Decision Support system 

• Multi-user operation in national/regional 
emergency centres for off-site nuclear emergency 
management 

• Provision of information for decision-making 

– on local / national / regional / European scales, 

– in the early and later phases of an accident, 

– for all relevant emergency actions and 
countermeasures. 

• Wide IT applicability  - HP-UX and Linux (RODOS), 
Microsoft Windows, Linux and Mac OS (JRodos) 
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Historical development 
• 1988-2002 RESY (Germany) / RODOS (Europe) 

– until end of 1998: RESY for emergency management in the 
near range of German NPPs; funded by German BMU  

– Since 1990: RODOS as comprehensive system, with RESY as 
integral part, but designed also for far range and late phase 
applications; funded by the EC with the involvement of FSU 
Institutes within EC Chernobyl Program  since 1992 

• 2003-2008 Reorganisation, as part of European project 
EURANOS 

– User wishes: Cheaper hardware, more simple use, 
maintenance, and customisation, modern look-and-feel of 
user interface 

• Since 2009 Newly organized JAVA based JRodos 

– For operation on modern IT - platforms (Microsoft Windows, 
Linux, Mac OS) 
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JRodos: Tasks, input data, output 

Contamination of air, ground, and 
vegetation,  food- and feedstuffs; 
potential doses 

Potential areas with actions;  organ 
doses, health effects , effort and 
costs 

Ranked list of possible strategies 
(Multi Attribute Value Theory) 

Countermeasures 
actions and 

consequences  

Evaluation 

 of action 
sequences 

Radiological Situation 
real-time diagnoses + 

prognoses 

JRodos 

Emergency 

and 

EmergencyLite- 

model chains 

Meteorology and Release 
(Measurements / Prognoses /  

User specified ) 

Geo-referenced data (orographical data, population, 

land use, ...); nuclide data, dose factors etc.; 

intervention criteria and levels; 

Scenarios for exercises 
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Task: Assessment of radiological situation – JRodos models 
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EmerSim: Early Countermeasures Model 

ERMIN: European model for inhabited areas 

 AgriCP: Agricultural Countermeasures Program  
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Hydrological  Dispersion Models (HDM)  of EC Decision Support System for Nuclear 
Emergency-  RODOS 

d

1-D river flow, 

sediments and 

radionuclide  

transport models 
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Basis of RODOS Hydrological Models – the models 
implemented after the Chernobyl Accident  

 

Chernobyl- 

1986   

Map from IAEA TechDoc 1230 
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90Sr and  137Cs in the waters of the  Dnieper’s reservoirs
90Sr in the reservoirs of the Dnieper cascade is still above of its pre-accidental levels 

137Cs activity concentration in the water at the lowest reservoir returned to its pre-

accidental level still in 1996-1998. 
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Kiev reservoir, 2010
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Kakhovka reservoir, 2010
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90Sr     10-20   Bq m3

Slide presented by  Oleg Voistekhovich (UHMI)  
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137Cs in the bottom 

sediments of Reservoirs

1991-93

Upper part of Kiev Reservoir

Low  part of Kiev Reservoir

2009
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Pripyat River

Data of UHMI contributed by V.Kanivets et al.

Kremetchug reservoir 

bottom, 1994
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Modeling system for watersheds- rivers –reservoirs has been 

developed after the Chernobyl accident  
Why modeling? 

The  models are the tools  for : 
 - Prediction and long term assessment of the 
temporal dynamics of the radionuclide 
concentration in water bodies 
 - Risk assessment for the  potential emergency  
(extreme floods, dam breaks)  
 - Analyses of the efficiency and justification of 
the countermeasures diminishing water fluxes  
of radionuclides  
  - Supporting  of the post accidental 
communications with the population  and 
mass media  
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The developed in Ukraine the set of the hydrodynamics – sediment transport- 
radionuclide transport models includes:  

• Watershed models RETRACE-R and RUNTOX 

• 3D Model- THREETOX  ( hydrodynamics hydrostatic 
model similar to POM) 

• 2D Model – COASTOX (hydrodynamics – shallow water 
equations)  

• 1D Model – RIVTOX ( hydraulics – Saint Venant 
Equations)  

 

 Radionuclide transport in solute and on suspended sediment modules :  
 advection diffusion equations including the  exchange  rates between liquid 
and solid phases on the basis of adsorption- desorption kinetic equations 
based on “distribution coefficient” – Kd and  exchange rate coefficients 
parameterizations ( similar to Prof. Yasuo Onishi’s  models, TODAM, FETRA, 
SERATRA) 

 



12 

Suspended sediment  

concentration S 

 

Radionuclide 

concentration in    

biota 

Radionuclide  

concentration in  

solute C 

Radionuclide  

concentration on  

suspended sediment 

Cs 

Radionuclide concentration Cb in upper bottom layer 

Radionuclide concentration in deep bottom deposition 

Advection 

Diffusion 

/Dispersion 

Adsorption Desorption 

Adsorption 

Desorption 

Sedimentation Resuspension 

Uptake 

Processes to be modeled for simulation radionuclide fate in 
surface water – rivers, reservoirs 

*    5 
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Processes to be modeled  pn watersheds  
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   TUBITAK, 3  November 2009 14 

Radionuclide transport from the Chernobyl 
site through the Kiev Reservoir – 90Sr flux is 

increased during each high flood. 
Last high flood - 1999 
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F) 

 

  

Simulated by 3-D model concentration of 90Sr a  the surface of Kiev Reservoir in A) 5 

March, B) 25 March and C) 15 April 1999 and simulated currents at the bottom E) and at 

the surface for the conditions of N-W wind, wind velocity |W|=5.3 м/s, maximum currents 

velocity |U|max=16 cm/s, Q=1100 m3/s. 
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Concentration of 90 Sr in Kiev Reservoir at dam of Hydro Power Plant in 1999  measured 

by different institutions and   results of the statistical processing of these data – mean value, 

upper and lower bounds of the confidential band.  

 



17 17 Fukushima 2014/02/12 

Model based forecasting of radionuclides fate in water systems 

Long term (scenario based)  forecasting for dose assessment 

No countermeasures  

After countermeasures  

Seasonal ( flood events ) forecasting 

Flood 1999 in Kiev and 

Zaporozhe Reservoirs 

Chernobyl modeling 
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Simulation of long-term fate of 90Sr in Kiev Reservoir 

Input scenarios of low- and high- water hydrological years in 
assumptions of absence of emergency situations in Chernobyl 
zone .Simulation has been done in 1995.  The measured data  
are close to the avaraging of the “best” scenario   
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1993 

Pripyat river floodplain was the most significant source of 90Sr secondary 
contamination in Dnieper system. No significant impact of 137Cs,  

Flood protective dyke construction 

1999 

The most efficient water protection was to control water 
level and to mitigate inundation of the most contaminated 
floodplains by the flood protection sandy dams  
constructed at left and right banks of the Pripyat river 

Pripyat River Floodplain around Chernobyl NPP was 
severe contaminated after the accident  

Sr-90 Contamination 

19 
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2D modeling predicted the efficiency of special dams  for the 

reducing of  radionuclide wash-off from the heavy contaminated 

floodplain of the Pripyat River at the city of Pripyat,   



21 

Water surface 

elevation 

Ice Jam at 

Yanov Bridge 

Measured Sr-90 concentration and  water elevation in Pripyat River in January 1991 at 

Chernobyl ! The forecast  of 1990 was confirmed by the monitoring data of 1991 !!! 

Sr-90 

pCi/L Maximum concentration at Ch NPP 

predicted in 1989-1990 = 290 pCi/L 

Maximum 

concentration 

measured at 

Chernobyl city in 

1991 
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2-D modeling of the inundation zones in a case of the dam break 
at  the Chernobyl Cooling Pond 
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Simulation of Sr-90 release from the Dnieper-Boog 
Estuary to the Black sea 
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Simulated fluxes of Cs-137 and Sr-90 from DBE into the 
Black Sea in first post accidental period 

Fluxes of  137Cs  

through the Kinbourn strait  

Fluxes of  90Sr  

through the Kinbourn strait  
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June 1986  

September 1988 

Calculated by 3-D model THREETOX  fields of 137Cs 

surface  concentrations (Bq/m3) in the Black Sea  
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East Black Sea  

East Black Sea  

137Cs concentration in piscivorous and non-piscivorous  

fish vs. measurements  ( box model Poseidon)  

West Black Sea  

West Black Sea  
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RODOS implementation in EC for Fukushima Dai-ichi NPP 
( March-April, 2011)) 
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What have we done for atmospheric 

modelling of Fukushima releases?

• Adaptation of RODOS to Japan ( topography, land 

use from open sources)

• The Meteorological Institute of KIT and 

IMMSP/UCEWP have provided meteorological 

forecast data based on the American global model 

GFS (50 – 100 km) adapted with the  model WRF 

for local application (10-20 km) 

• The Gesellschaft für Anlagen- und 

Reaktorsicherheit (GRS) has provided potential 

source terms for our calculations
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Visualization of numerical weather prediction data from WRF 
model: wind field at 10m near Fukushima in JRODOS window 
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Comparison of wind speed and wind direction with 

observation data from Fukushima Airport (upper 

pictures), Tokyo Airport (lower pictures) 
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Release scenarios

• GRS provided two source terms

– Release from some  fuel rods (lower estimation – gap release)

– Release assuming a core melt (upper estimation – core melt)

• Estimated activit released (Bq)

gap release core melt core melt max.

– Xe-133 4.E14 3.E18 3.E18

– I-131 4.E13 4.E16 4.E17

– Cs-137 2.E13 3.E15 3.E16

– Pu241 0.E00 9.E11 9.E12

• On 12.04.2011 the Nuclear and Industrial Safety Agency (NISA) 
estimated the release (in Bq) as follows

– I-131 1.3E17 

– Cs-137 6.1E15 

– I-131 equivalent 3.7E17 (sum of I-131 + Cs-137)

• On 06.06 source term has been raised by factor of two
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Daily calculations based on weather predictions- the results 
were presented online on the web site of Karsruhe Institute of 

Technologies, Germany  

Using the core 
melt release 
scenario 
calculations 
were 
performed to 
predict the 
contamination 
for the next 24 
hours 
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RODOS simulation with RIMPUFF 
 

• Calculation for 3 days 
14.03 – 16.03 

• Weather from GFS 
(USA) + WRF with 
resolution of about 10 
km 
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Comparison of monitoring and simulation 

U.S. Department of Energy 

http://energy.gov/news/10194.ht
m 

 

Estimation with RODOS 

Source term: ~ 1.0E16 Bq Cs-
137 

4 days duration, 3 peaks 

http://energy.gov/news/10194.htm
http://energy.gov/news/10194.htm
http://energy.gov/news/10194.htm
http://energy.gov/news/10194.htm
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Comparison of station data with Numerical Weather 
Prediction  Data 

• Source term as before, but weather data only from station 
near Fukushima (RODOS mit ATSTEP) 

Monitoring total Cs Calculations total Cs 



37 37 

 

JRODOS  Fukushima112 22.06.2011 IKET (KIT); UCEWP

Structure of Information flow for HDM

THREETOX: 

Hydrodymics Module (temperature, salinity, currents)

Sediment Transport Module

Radionuclide transport in 3 phases ( in solute, on  

suspended sediments, contamination of upper bottom 

sediment layer)  

JRODOS – HDM

Hydrological Dispersion Module

3D Marine Hydrodynamics and Radionuclide Transport 
Model THREETOX

JRODOS – ADM 
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Adaptation of the RODOS_HDM to Japan 

Complicated flow structure due to abrupt 

changes in bathymetry and dynamic changes 

in ocean circulation   
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JRODOS  Fukushima114 22.06.2011 IKET (KIT); UCEWP

Boundary conditions for the release scenarios

Atmospheric 

Fallout from 

RODOS ADM

Direct water release 

from NPP 

Water 4.3 m³/h.

Concentration 137Cs

1.8 GBq/L

2 - 6 April 2011

Total 0.95 PBq

(0.95 x 1015 Bq)

NISA estimate based 

on TEPCO data ( 

presented on IAEA 

Web Site)

Meteorological 

Data from US  

Final Reanalysis

THREETOX-HDM 

Oceanographical

Boundary Conditions from Korean 

KORDI Pacific Ocean Model MOM
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137Cs concentration ( Bq/m3) in upper water layer due 

to atmospheric fallout  12-24 March 2011   
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137Cs concentration ( Bq/m3) in upper water layer due  

to direct water release 2 - 6 April 2011 

Simulations from 7-15 April 
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Concentrations in water and sediments 

a

) b

) 

c

) 

137Cs concentrations in marine water 

23 March                               18 April 

137Cs concentrations  

in the bottom 18 April 
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JRODOS  Fukushima119 22.06.2011 IKET (KIT); UCEWP

Comparison of measured and calculated data
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Water systems of Chernobyl and Fukushima regions:  
 
Common problems = rivers/reservoirs  as pathways of radionuclide 
transport from the most contaminated zones  to the populated areas: 
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Water systems of Fukushima regions:  
 Common  with Chernobyl problems = rivers/reservoirs  as pathways of 
radionuclide transport from the most contaminated zones  to the populated 
areas: 

Falllout density December 2012 

http://ramap.jmc.or.jp/map/eng/ 
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Water systems of Fukushima regions:  
 

Common  with Chernobyl problems = rivers/reservoirs  as pathways of 
radionuclide transport from the most contaminated zones  to the populated 
areas: 

Falllout density December 2012 

http://ramap.jmc.or.jp/map/eng/ 
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Water systems of Chernobyl and Fukushima regions-:  
differences:  

Chernobyl Region:  

Plain watersheds- mild slopes, small 

erosion  

Mild amount of precipitations, no rain 

season  

Fukushima Region:  Mountainous  

watersheds - steep slopes, high erosion 

High amount of precipitations, rain 

seasons, typhoons 

Volcanic soils     



48 5-35% of Cs-137 in solute, up to 95% on sediments  

Monitoring radioactive cesium in Abukuma River in Fukushima Prefecture 
Kenji NANBA 

Date 
Sediment 

Concentration  
g/L 

Dissolved Cs-137 

(Bq/L) 

Cs-137  
on Suspended Sediment 

(Bq/L) 

Total Cs-137  
in River Water  

(Bq/L) 

Dissolved/Total 
(%) 

5/8/2012 0.0268 5.42E-02 2.00E-01 2.54E-01 21.31 

6/5/2012 0.021035 1.19E-02 1.24E-01 1.36E-01 8.75 

6/26/2012 0.008126 1.26E-02 5.49E-02 6.75E-02 18.67 

7/10/2012 0.011275 1.61E-02 1.26E-01 1.42E-01 11.33 

7/30/2012 0.013214 1.84E-02 5.99E-02 7.83E-02 23.50 

9/4/2012 0.00991 1.73E-02 1.46E-01 1.63E-01 10.62 

9/11/2012 0.007573 2.12E-02 8.69E-02 1.08E-01 19.60 

9/25/2012 0.017388 2.73E-02 2.92E-01 3.19E-01 8.56 

10/9/2012 0.008278 1.58E-02 7.90E-02 9.48E-02 16.67 

10/29/2012 0.01169 1.36E-02 1.68E-01 1.81E-01 7.50 

11/13/2012 0.006408 1.27E-02 6.81E-02 8.08E-02 15.73 

12/5/2012 0.020319 2.27E-02 6.10E-01 6.33E-01 3.58 

12/11/2012 0.002451 1.37E-02 5.58E-02 6.96E-02 19.74 

12/18/2012 0.003274 9.78E-03 3.42E-02 4.40E-02 22.22 

12/25/2012 0.002347 1.22E-02 2.67E-02 3.89E-02 31.36 
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At 90%-95% of Cs-137 at Fukushima is transported 
by sediments in river water. 
 
At Chernobyl – only up to 50% in initial period, than 
less, why??  What are the reasons and with which 
weight for such difference??  

 

1) Steep mountain slopes vs mild or small plain 
slopes ??? 
2) Volcanic Fukushima soils  vs soils of the 
Ukrainian- Byelorussian Poles’ye , i.e difference in 
Kd? 
3)  Typhoon generated higher amount of 
precipitations? 
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Watersheds at Boguslav / Kiev oblast, RUNTOX testing within EC 

SPARATCUS Projevt ( M van der Perk, Kivva Korobova et al 

Butenya 

River 

watershed  
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DHSMV- RUNTOX model preliminary testing for 
Fukushima experimental plots  

Site specific : Steep slopes  

e.g. site  A1 –slope =4.36 degree (7.36%) 

In Chernobyl zone experimental plots (Konoplev et al. 1998) 
– slope 2.29 degree  (4%) 

Heavy precipitations: at  Fukushima city day maximum – 
165 mm,  hour maximum 69 mm 
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 simulations of the influence of the watershed slope on 
the fluxes of the washed out Cs-137 in solute and with 
the eroded soil during extreme rainstorm  

Simulated wash off  Cs137 

from two plots with the eroded 

soil ( sediments) 
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Plot description Total amount of 
washed out Cs-137 
during one rainstorm 

Plot A – parameters of A1 plot of Tsukuba Univ.  Slope 7.36% 11 530. Bq 

Plot B– parameters of A1 plot of Tsukuba Univ., However smaller 
slope 4% as in Chernobyl sites  

 

690 Bq 



55 

For the same Kd the twice steeper 
slope provides 20 times higher 
amount of Cs-137 on sediments – 
only due the higher  amount of 
the precipitation !  
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RODOS models implementation in Fukushima area 

1 RIVERS  
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Annual amounts of sediment and 137Cs exported into the ocean by the ruvers at Fukushima 
 

River 

Basin 

area 

(km2) 

Sediment discharge to 

ocean (t/y) 

137Cs discharge to ocean 

(Bq/y) 

137Cs to ocean/sediment to ocean 

(Bq/kg) 

Abukuma 5423 2.4 × 105 3.0 × 1012 1.2 × 104 

Ukedo 420 2.7 × 104 2.0 × 1012 7.2 × 104 

Niida 261 1.6 × 104 1.1 × 1012 6.5 × 104 

Maeda 48 1.6 × 103 4.0 × 1011 2.5 × 105 

Kuma 74 2.5 × 103 2.8 × 1011 1.1 × 105 

Ota 79 1.7 × 103 2.7 × 1011 1.6 × 105 

Mano 167 5.5 × 103 2.0 × 1011 3.7 × 104 

Kido 260 1.5 × 104 1.4 × 1011 9.0 × 103 

Odaka 67 2.5 × 103 1.3 × 1011 5.3 × 104 

Tomioka 63 2.0 × 103 1.1 × 1011 5.8 × 104 

Natsui 685 4.2 × 104 1.1 × 1011 2.6 × 103 

Same 592 5.1 × 104 8.9 × 1010 1.7 × 103 

Ide 40 3.0 × 103 6.9 × 1010 2.3 × 104 

Uda 173 2.4 × 103 6.4 × 1010 2.6 × 104 

Total 8352 4.2 × 105 8.4 × 1012 2.0 × 104 

FROM: Kitamura, 

A., Yamaguchi, M., 

Kurikami, H., Yui, 

M., & Onishi, Y. 

(2014). Predicting 

sediment and 

cesium-137 

discharge from 

catchments in 

eastern 

Fukushima. Anthrop

ocene. Volume 5, 

March 2014, Pages 

22–31 

http://www.sciencedirect.com/science/journal/22133054/5/supp/C
http://www.sciencedirect.com/science/journal/22133054/5/supp/C
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Contaminated reservoirs at Fukushima Daichi accident fallout zone 

1

1-Ganbe (Iwabe ) Dam at  Ittoi- gawa River – the tributary of Nitta gawa

2-Mano Dam  at Mano Gawa River

3- Ogaki Dam at  Ukedo -gawa River

4 - Tetsuzan Dam and 5- Yokokawa Dam at Ota-gawa River 

6- Takanakura Dam at Mizunashi Gawa River – tributary of Nitta Gawa River

2

3

4

3

5

6
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2D COASTOX model implementation for simulation of  Cs-137 transport 
in the reservoirs of Fukushima fallout Zone 
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Tetsuzan Dam destroyed by 

earthquake – now floodplain 
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Takanakura Dam  
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Collection and processing Watersheds and Rivers Data  

 Abukuma River  

DEM of Abukuma river                                  Cs-137 fallout density 
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Nida (Nitta)  River Watershed and sub-watershed of 
Takanokura Reservoir 
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Modeling of watershed of Takanokura Reservoir  
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Modeling of suspended sediment transport and Cs-137 
transport with sediments   
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Suspended sediment transport 
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Mano Dam 
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Yokokawa Dam  
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COASTOX model is customized and preliminary tested 
for three reservoirs 

Cs -137 concentration on the suspended sediments ( left) and in the bottom 

deposition of the Yokokawa Dam  during the high flood in the reservoir  
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Conclusions: 

1 The modeling system that was implemented for 
Chernobyl site,  validated within IAEA programs and 
integrated into the EC decision support system RODOS,  
starts to be implemented for the watersheds, rivers, 
reservoirs of Fukushima Prefecture 

2 Reliable short term and long term forecasting of the 
future dynamics of Cs-137 in water bodies  in different 
hydrometeorological scenarios and the quantization of 
the efficiency of the countermeasures can be provided 
using  such modeling tools 

2 Even in the initial post accidental  period of the 
significant uncertainties of the source term the 
physically based well validated model can produce 
reasonable assessments of the  radiological situation  


