

International Experts' Meeting on Assessment and Prognosis in Response to a Nuclear or Radiological Emergency

20–24 April 2015, Vienna, Austria

Development of a platform for the evaluation of the source term and the atmospheric dispersion of a nuclear facility in a radiological emergency event

S. Mazidi¹, Bitam¹, B. Meftah², T, H. Fellouh² ¹Centre de Recherche Nucléaire de Draria, BP43 Sebala-Draria, Algiers-Algeria ²COMmissariat à l'ENergie Atomique, 2Bld. Frantz Fanon, Alger Gare, Algiers-Algeria

As part of the implementation of the national emergency preparedness and intervention in nuclear accidents, the Algerian Commission of Atomic Energy (COMENA) is developing a Radiological Emergency Preparedness Advisory System (REPAS). The system would be used to monitor the operation of its nuclear facilities and to analyze abnormal events to continuously improve the safety systems and to develop and implement various emergency crisis plans. To take rapid and efficient corrective measures, decision makers require a swift estimate of the radiological conditions around the facility. To this end, specific tools are needed to evaluate the source term and the dispersion of radioactive products released in the environment to estimate the impact on the public and the environment in terms of radioactive exposures and radioactive deposits.

22500

20

10

A PC-based platform for the simulation and analysis of nuclear accidents in MTR type research reactors was developed. The platform allows a rapid determination of the radioactive source term and the atmospheric dispersion of radioactive products around the facility in the event of a reactor accident, taking into account pertinent parameters such as: reactor operating parameters, containment

Main Graphical Interfaces

Sample results of accident scenarios simulated for the case of the NUR research reactor according to the characteristic parameters of the facility and meteorological conditions specified in the table

Fuel quant (g)	ty enrichment (% U235)	leakage rate from the confinement (m ³ /s)	free surface area (m ²)/confinemen t volume (m ³)	Filter retention factor	Wind speed (m/s) Stability	Plume Height (m)	
-------------------	------------------------------	--	---	-------------------------------	----------------------------------	---------------------	--

S=105

V=1062

The platform combines neutronic and thermal hydraulic calculations, using the ATHNA.Sys Analyser system, radioactive inventory estimation by the ORIGEN code and environment radioactive releases dispersion calculations by HOTSPOT code. GIS/Google Earth and SURFER10 are used to determine the geographical positions.

Element	Released quantity (Ci)	Element	Released quantity (Ci)	
Kr 83M	242.7	I133	1526.4	
Kr 85M	573.5	I134	1708.1	
Kr 85	1.6	I135	1419.8	
Kr 87	1151.5	Ba140	27.7	
Kr 88	1635.7	Sr 89	14.0	
Kr 89	1728.1	Sr 90	0.1	
Xe131M	14.1	Te127	35.3	
Xe133	3053.1	Te127M	1.9	
Xe135M	494.8	Te129	153.4	
Xe135	1772.2	Te129M	18.7	
Xe137	2320.7	Te132	974.6	
Xe138	2706.3	Cs137	6.6	
BR 82	0.1	Cs138	1494.9	
1131	656.6	Rh105	4.8	
1132	975.2	Ru103	10.6	

Fission product ejection time

v=3

0.5

Wind speed

