Safe Storage of Zeolite Adsorbents used for Treatment of Accident-generated Water at Fukushima Daiichi Power Station

I. YAMAGISHI

Japan Atomic Energy Agency (JAEA)

W. Ji, H. Fukushima, S. Sato (Hokkaido University)
Y. Okagaki (Utsunomiya University)
M. Denton (Kurion Inc.)
Safe storage of radioactive zeolites

Circulating Water Cooling at Fukushima-1 NPS

Oil separator

Spent adsorbents
※Cs removal >99%, high activity

Removal of radioactive materials

- Cs adsorption (KURION)
- 2nd Cs adsorption (SARRY)
- Decontamination by precipitation (AREVA)

Desalination

- Reverse Osmosis
- Evaporative Concentration

Saline waste

AREVA sludge
※low activity

ALPS

- Characterization of spent KURION media
 ➢ Radioactivity, thermal conductivity, etc.
- Verification of its safe storage
 ➢ Hydrogen by water radiolysis, corrosion, etc.

Seawater
Hydrogen production from zeolite mixtures

Dose dependence of H₂ production

*1 Kumagai et al., Transactions of the AESJ, 10(4), 235 (2011).

Air-sat., R.T., dose rate 1-4 kGy/h

\[P \text{ [mol/g]} = G \text{ [mol/J]} \times D \text{ [J/g]} \]

Formation of H₂ in aqueous phase and emission up to gas phase

- **primary yield**, \(g(H₂) \)
- **observed yield**, \(G(H₂) \)

- **ionizing radiations**
- **diffusion, equilibrium**
- **oxidation by radiolysis products**
- **H₂O + H**
- **OH**

- **H₂**

- **gas phase**

- **aqueous phase**

- **Absorbed dose by mixture [kGy (= J/g)]**

- **seawater only**
- **pure water only**
- **seawater + zeolite (50 wt%)**

- **seawater**
- **zeolite addition**
- **50% of seawater only**

H₂ production:
- seawater(100 wt%) > seawater(50) + zeolite(50) > pure water(100).
 - Because H₂ is oxidized to H₂O in pure water but not in seawater.
 - Desalination & Dehydration are important for safe storage.
Estimation of temperature and hydrogen in vessel

Thermal-hydraulic analysis

- Model, code: 3D full structure, FLUENT
- Zeolite: dried Herschelite loading Cs 0.07wt%

Hydrogen concentration less than 4% (under the lower explosive limit)

- The maximum temperature of zeolite bed (153°C) became lower than the self-ignition temperature of hydrogen (about 560°C).
- Opening end lines of water inlet/outlet and vent tubes, a kind of siphon effect occurred by buoyancy and difference of mixed gas density. \(\text{H}_2 \) concentration in a vessel is kept lower than 4% (the under explosive limit).

⇒ Opening of the tubes is effective for decreasing of \(\text{H}_2 \) concentration
Stress Corrosion Cracking (SCC) was not observed on the surface of U-bend coupons after the 1000-hour test (Cl- 20,000 ppm) and 2000-hour tests (Cl- 2,000 and 6,000 ppm) at 80 °C.
Estimation of Cs in zeolite by ZAC code

ZAC (Zeolite-Adsorption Column) code

- Distribution of Cs in a vessel is a primary input for more precise evaluation.
- Improved code will be applied to the analysis of an actual vessel.

The results essential to the safe storage will be summarized by the end of FY 2013.