Prior Estimation of Dose Reduction as a Result of Decontamination in Fukushima Pilot Project

Masahiko Okumura1, Koichiro Akasaka2, Hiroyasu Takase2, Kaname Miyahara1, and Shinichi Nakayama1

1) Japan Atomic Energy Agency (JAEA), Tokyo, Japan
2) Quintessa Limited K.K., Yokohama, Japan
Prior Estimation of Decontamination Effects

• After the Fukushima Dai-ichi nuclear accident, Japan Atomic Energy Agency (JAEA) was chosen by the Government to conduct decontamination pilot projects at selected sites in Fukushima prefecture.

• As a component of this work, a prior estimation of potential dose reduction over large areas was derived using the “Calculation system for Decontamination Effect (CDE)”, which was developed by JAEA.

• CDE is a simple computer program to estimate air dose rates before and after decontamination from measured (or estimated) surface contamination by gamma-emitters (Cs-134 and -137 in this case).
Calculation System for Decontamination Effect

- In general, calculation of air dose rate from gamma-emitters is very heavy work, because Monte Carlo transport simulation on large computer (cluster, supercomputer, etc.) is usually needed.
- In particular, large-scale calculation is almost impossible mainly due to limitation of computational resources.

- JAEA developed simplified computer program for easy estimation of the air dose rate.
- The name is “Calculation system for Decontamination Effect (CDE)”.
- CDE is based on a key assumption for easy calculation on small PC, which is neglect of undulation in target area.

- CDE has been verified against a standard code for a planar surface test case.
Procedure

Calculation scheme of CDE for evaluation of decontamination effect

<table>
<thead>
<tr>
<th>Before decontamination</th>
<th>After decontamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Output 1: air dose rate before decontamination</td>
<td>Output 2: air dose rate after decontamination</td>
</tr>
<tr>
<td>X 1/DF</td>
<td></td>
</tr>
<tr>
<td>Input 1: land-use map (mesh type)</td>
<td>Input 3: DFs</td>
</tr>
<tr>
<td>Example: Farmland, road</td>
<td></td>
</tr>
<tr>
<td>Input 2: surface contamination density</td>
<td></td>
</tr>
</tbody>
</table>

- We make mesh-type **land-use map** by hand using satellite images.
- **Surface contamination density** is put to the map.
- **Decontamination factors (DFs)** depend on land-use, e.g., soil removal for school ground, washing by high-pressure water for road, etc. We prepare the values of DFs obtained by measurements in the project.
- DF is applied to corresponding mesh.
- CDE calculates **air dose rate before and after decontamination**.
Results(1)

Target area
A part of Tamura city
- The place for first application of large-scale decontamination by the Government
- Distance from Fukushima Dai-ichi NPP is about 20km.
- About 4,200ha

CDE calculation

Before decontamination

After decontamination
Results(2)

• Estimation of total amount of waste

Once the mesh-type map is made, we can estimate total amount of waste.

An example of the mesh-type map (5m x 5m mesh)

![Mesh-Type Map Example]

- Dark green: Forest (excluded from decontamination area)
- Dark blue: Forest (decontamination area)
- Pink: Agricultural land (decontamination area)
- Dark grey: Road (decontamination area)
- Light pink: House (decontamination area)

We can know roughly areas for each land-use by counting the number of corresponding mesh.

Amount of soil waste generated by soil removal

<table>
<thead>
<tr>
<th>Land-use</th>
<th># of mesh</th>
<th>The number of waste package / 1ha [1/ha]</th>
<th>The number of waste package</th>
</tr>
</thead>
<tbody>
<tr>
<td>Forest</td>
<td>163,800</td>
<td>200</td>
<td>81,900</td>
</tr>
<tr>
<td>Ground</td>
<td>81,226</td>
<td>500</td>
<td>101,500</td>
</tr>
<tr>
<td>Total</td>
<td>-</td>
<td>-</td>
<td>183,400</td>
</tr>
</tbody>
</table>

Average number of waste package obtained in the pilot project.
Summary

• A prior estimation of potential dose reduction over large areas has been done using CDE which has been developed by JAEA.

• CDE calculation requires 3 inputs:
 – Land-use map
 – Surface contamination density
 – Decontamination factors

• Application for a part of Tamura city, where is one of the places for first large-scale decontamination by the Government.
 – We can know potential dose reduction roughly before decontamination.
 – We can know approximately total amount of waste before decontamination.

• Note
 – Calculated decontamination effect depends in a large part on topographical relief and the value of DFs. Users must pay attention to this point.

• JAEA continues to develop CDE.
Backup Slides
Verification

Simulation setting

Distance from the center
Height 600m
Contaminated surface
Decontamination area

The results of CDE are in a good agreement with ones of PHITS. This result implies that CDE works well within this setting.

Comparison between CDE and PHITS*

Figures are taken from JAEA-Research 2012-020

* PHITS is a Monte Carlo simulation code
http://phits.jaea.go.jp
Validation

- Validation of CDE: application to Kawamata-machi in the pilot project
 - Figure shows deviation of a CDE result using measured DFs from air dose rate measured after decontamination.

Deviation is large at yellow and black circle

- Yellow circle represents undulating landscape
- Black circle represents residential area (screening effect by houses)

Conclusion

- CDE gives good result at flat landscape.
- If landscape is undulating, deviation becomes large.
Surface Contaminate Density

- Surface contaminate density is obtained from air dose rate measured by airplane.
- Transformation constant is used.
- This transformation gives one of origins of ambiguity in CDE calculation.