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FOREWORD 

Neutron activation analysis (NAA) is an analytical technique based on the measurement of 
characteristic radiation from radionuclides formed directly or indirectly by neutron irradiation 
of the material of interest. In the last three decades, neutron activation analysis has been found 
to be extremely useful in the determination of trace and minor elements in many disciplines. 
These include environmental analysis applications, nutritional and health related studies, 
geological as well as material sciences. The most suitable source of neutrons for NAA is a 
research reactor. 

There are several application fields in which NAA has a superior position compared to other 
analytical methods, and there are good prospects in developing countries for long term 
growth. Therefore, the IAEA is making concerted efforts to promote neutron activation 
analysis and at the same time to assist developing Member States in better utilization of their 
research reactors. As part of this activity, the IAEA organized an Advisory Group Meeting on 
“Enhancement of Research Reactor Utilization for Neutron Activation Analysis” in Vienna 
from 22 to 26 June 1998. The purpose of the meeting was to discuss the benefits and the role 
of NAA in applications and research areas that may contribute towards improving utilization 
of research reactors. 

The participants focused on five specific topics: 

(1) Current trends in NAA; 
(2) The role of NAA compared to other methods of chemical analysis; 
(3) How to increase the number of NAA users through interaction with industries, research 

institutes, universities and medical institutions; 
(4) How to reduce costs and to maintain quality and reliability; 
(5) NAA using low power research reactors. 
  
This TECDOC details the highlights of the discussions in the meeting along with the papers 
presented. The IAEA is grateful to Mr. P. Bode (Delft University of Technology, Netherlands) 
for compiling the publication. It is hoped that it will enhance the effectiveness of research 
reactor laboratories and help identify fields of application where neutron activation analysis 
can be of value. 

The IAEA officer responsible for this publication was B. Dodd of the Division of Physical and 
Chemical Sciences. 
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1. INTRODUCTION 

Over the past fifty years, research reactors have progressed through a variety of tasks. These 
have included materials research using neutron scattering and diffraction, materials 
characterization by activation analysis and radiography, isotope production, irradiation testing, 
as well as training, and service as centres of excellence in science and technology. There have 
been a number of IAEA sponsored meetings, seminars and symposia on research reactor 
utilization. In spite of these efforts, research reactors in some countries are still under-utilized. 
This is especially true in the 39 developing countries which together have 84 operational 
research reactors [1]. Since research reactors have a high capital cost and require a substantial 
operating budget, the IAEA makes efforts to assist in their effective utilization. As part of that 
project, the IAEA organized an Advisory Group Meeting on “Enhancement of Research 
Reactor Utilization for Neutron Activation Analysis” which was held in Vienna, 22–26 June 
1998. 

Neutron activation analysis (NAA) is a method for qualitative and quantitative determination 
of elements based on the measurement of characteristic radiation from radionuclides formed 
directly or indirectly by neutron irradiation of the material. The most suitable source of 
neutrons is usually a nuclear research reactor. The method’s characteristics can be 
summarized as follows: 

(1) Very low detection limits for 30–40 elements, 
(2) Significant matrix independence, 
(3) The possibility of non-destructive analysis (instrumental NAA or INAA), 
(4) The use of radiochemical separation to overcome interference in complex gamma-ray 

spectra (radiochemical NAA or RNAA), 
(5) An inherent capability for high levels of accuracy compared to other trace element 

analysis techniques. 
 
Due to its inherent sensitivity and accuracy, neutron activation analysis has been extensively 
applied to environmental sciences, nutritional studies, health related studies, geological and 
geochemical sciences, material sciences, archaeological studies, forensic studies and nuclear 
data measurements. In addition to these applications, NAA has a role in the quality assurance 
of chemical analysis. 

Since NAA requires access to a nuclear research reactor, the method is less widely applied 
than other analytical techniques for elemental analysis, such as atomic absorption 
spectroscopy (AAS), inductively coupled plasma spectroscopy (ICP) and X-ray fluorescence 
spectroscopy (XRF). These area all techniques for which stand-alone equipment is easily 
available and consequently, the call on NAA for elemental analysis is decreasing. Thus, also 
the utilization of the reactor is affected. 

The decreased interest for NAA results partly from insufficient awareness within the applied 
fields regarding the opportunities of this technique. Each analytical technique has its own 
particular advantages and disadvantages that make it suitable (or unsuitable) for a given 
application. NAA is unique in several important aspects such as being largely independent of 
matrix effects, being suitable for analysis of materials that are difficult to dissolve (e.g. 
silicon, ceramics), being relatively insensitive to sample contamination and having specific 
means of detection. Due to these comparative advantages, sensitivity and accuracy, it has a 
special role as a reference technique for other analytical methods. 
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The purpose of the Advisory Group meeting was to discuss the benefits and the role of the 
NAA in many applications and research areas that may contribute towards improving 
utilization of research reactors.  

The discussion included the following subjects: 

(1) Current trends in NAA; 
(2) The role and opportunities of NAA compared to other methods of chemical analysis. 
(3) How to increase the number of NAA users through interaction with industries, research 

institutes, universities and medical institutions; 
(4) How to reduce costs while maintaining the quality and reliability of NAA; 
(5) NAA using low power research reactors such as the Miniature Neutron Source Reactor 

(MNSR) or the SLOWPOKE reactor. 

These topics are relevant in that several NAA laboratories are run in a way that is far from 
optimum as regards the needs of the institution and the country. 

This publication summarizes the discussions and conclusions resulting from the meeting. In 
Annex I a brief introduction is given in the methodology on NAA. In Annex II, presentations 
of the individual experts are given that describe in more detail typical, or illustrative, 
applications of NAA or such applications that can be considered typical for a particular 
country.  

This TECDOC is expected to benefit the NAA laboratories associated with research reactors 
that could support a broad range of research and applied projects. 

2. CURRENT TRENDS IN NEUTRON ACTIVATION ANALYSIS 

2.1. Trends 

It is generally accepted that NAA is a mature technique. The principles of the method are well 
understood and there are almost no fundamental aspects in the method that imply further 
development, innovation or for which technological breakthroughs are foreseen, that would 
change the role of NAA dramatically. Therefore, in this chapter the focus is on trends in 
applications of NAA. 

It is hard to point out international trends in the use of NAA. It is important to realise that by 
definition “trends” imply a contemporary process. Moreover, the applications are often 
initiated by the national needs, e.g. to serve the local industry and economy, or for local 
environmental studies. As such, trends in the use of NAA in East Asian countries for example 
will differ from those in Latin American countries.  

One of the trends that can be derived from the recent literature is that laboratories are 
increasingly using other methods of analysis complimentary to NAA to widen the information 
content in their studies. For instance, AAS offers the opportunity to get data on Pb, which is 
still considered an important element in many environmental studies. Equally so, AAS and 
ICP are much easier to use for water analysis; but are complimentary again, if NAA is applied 
for sediment studies.  

A new market segment, developing fast in many countries, is metrology in chemical 
measurements. As mentioned previously, for a long time NAA has been used in many 
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countries in the characterization of candidate reference materials. Nowadays there is a trend to 
establish national reference laboratories for metrology in chemistry. Facilities with NAA 
capability can play a role in this, not only in the development of reference materials but also 
for the verification of reference methods and for validation of other methods of elemental 
analysis. Under extreme conditions with respect to the methodology, and in particular the 
conduct of the analysis, NAA may fulfil the requirements to serve as a “primary ratio method” 
for determinations of amount of substance [2].  

Although often the accuracy of NAA is taken for granted, there is a trend that may have a 
reverse effect on analytical quality. Physicists always have been involved in the development 
stage of NAA as an analytical technique. In several NAA laboratories these pioneers of the 
1960s and 1970s are now, at the turn of the millennium, close to retirement. It appears to be 
difficult to find their replacement by young physicists because NAA does not offer an outlook 
for many challenges. Consequently, there is a trend now that many NAA laboratories are 
occupied and managed by chemists. It cannot be excluded that due to insufficient background 
in the underlying physics sources of error may be underestimated or not recognised at all, with 
negative effects for the analytical quality of these laboratories. 

In recent years, a decline may be seen concerning the NAA applications in geochemistry, 
mineral exploration, and in materials science, especially in developed countries. One of the 
reasons is the need for isotope specific information for certain elements. This is information 
that is often easier to obtain via ICP-MS. In addition, improvement of matrix correction 
algorithms for X-ray fluorescence spectrometry has boosted this technique as well, 
particularly since the sensitivity is sufficient for the determination of the major constituents. 
The role of NAA in biomedical studies, in quality assurance and in the preparation of 
reference materials appears to be firmly established, while a number of environmental and 
health-related applications, including nutritional studies seems to be slightly increasing. 
Moreover, new types of applications such as large sample analysis [3], [4] and chemical 
speciation studies [5] have also appeared. 

Finally, there is a trend to assess the position of NAA via the number of related scientific 
publications. This number is declining, both in absolute terms as well as relative to the 
number resulting from the use of other analytical techniques. Such evaluations do not give 
details on the type of papers, viz. if they are related to fundamental development without 
opportunities for application, practical innovations, applications or troubleshooting, and 
therefore can be misleading. However, to some extent the declining number of NAA papers 
may partly reflect the closing of nuclear research reactors in several countries, and with it, the 
reduction in the number of NAA laboratories.  

2.2. Typical applications 

It is hardly possible to provide a complete survey of current NAA applications, however, some 
trends can be identified. At specialized institutions, NAA is widely used for analysis of 
samples within environmental specimen banking programmes [6]. The extensive use of NAA 
in environmental control and monitoring can be demonstrated by the large number of papers 
presented at two symposia organized by the IAEA in these fields: "Applications of Isotopes 
and Radiation in Conservation of the Environment" in 1992 [7] and "Harmonization of 
Health-Related Environmental Measurements Using Nuclear and Isotopic Techniques" in 
1996 [8]. Similar trends can also be identified from the topics discussed at the regular 
conference on “Modern Trends in Activation Analysis (MTAA)” and at the symposia on 
"Nuclear Analytical Methods in the Life Sciences" [9–11]. The above mentioned proceedings 
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can be considered not only as sources of information on already existing applications, but also 
as an inspiration for future possible developments. 

Additional sources of recent information on utilizing NAA in selected fields, such as air 
pollution and environmental analysis, food, forensic science, geological and inorganic 
materials as well as water analysis can be found in the bi-annual reviews in Analytical 
Chemistry, for instance cf. Refs [12–20]. It follows from these reviews that NAA has been 
applied for determining many elements, usually trace elements, in the following fields and 
sample types: 

(1) Archaeology — amber, bone, ceramics, coins, glasses, jewellery, metal artefacts and 
sculptures, mortars, paintings, pigments, pottery, raw materials, soils and clays, stone 
artefacts and sculptures. 

(2) Biomedicine, animal and human tissues activable tracers, bile, blood and blood 
components, bone, brain cell components and other tissues, breast tissue, cancerous 
tissues, colon, dialysis fluids, drugs and medicines, eye, faeces, foetus, gallstones, hair, 
implant corrosion, kidney and kidney stones, liver, lung, medical plants and herbs, milk, 
mineral availability, muscle, nails, placenta, snake venom, rat tissues (normal and 
diseased), teeth, dental enamel and dental fillings, thyroid, urine and urinary stones. 

(3) Environmental science and related fields — aerosols, atmospheric particulates (size 
fractionated), dust, fossil fuels and their ashes, flue gas, animals, birds, insects, fish, 
aquatic and marine biota, seaweed, algae, lichens, mosses, plants, trees (leaves, needles, 
tree bark), household and municipal waste, rain and horizontal precipitations (fog, icing, 
hoarfrost), soils, sediments and their leachates, sewage sludges, tobacco and tobacco 
smoke, surface and ground waters, volcanic gases. 

(4) Forensics — bomb debris, bullet lead, explosives detection, glass fragments, paint, hair, 
gun shot residue swabs, shotgun pellets. 

(5) Geology and geochemistry — asbestos, bore hole samples, bulk coals and coal products, 
coal and oil shale components, crude oils, kerosene, petroleum, cosmo-chemical 
samples, cosmic dust, lunar samples, coral, diamonds, exploration and geochemistry, 
meteorites, ocean nodules, rocks, sediments, soils, glacial till, ores and separated 
minerals. 

(6) Industrial products — alloys, catalysts, ceramics and refractory materials, coatings, 
electronic materials, fertilizers, fissile material detection and other safeguard materials, 
graphite, high purity and high-tech materials, integrated circuit packing materials, on-
line, flow analysis, oil products and solvents, pharmaceutical products, plastics, process 
control applications, semiconductors, pure silicon and silicon processing, silicon 
dioxide, NAA irradiation vials, textile dyes, thin metal layers on various substrates. 

(7) Nutrition — composite diets, foods, food colours, grains, honey, seeds, spices, 
vegetables, milk and milk formulae, yeast. 

(8) Quality assurance of analysis and reference materials — certification of element 
contents and homogeneity testing of mainly biological and environmental reference 
materials of chemical composition, method intercomparisons (more on these topics can 
be found in Refs [21–25] and in Proceedings of the Int. Symposia on Biological and 
Environmental Reference Materials (BERM), for instance cf. Refs [26–28]). 
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3. THE ROLE AND OPPORTUNITIES OF NAA COMPARED TO 
OTHER METHODS OF CHEMICAL ANALYSIS 

3.1. Developments with other methods for elemental anaysis 

Over the years, the IAEA has regularly evaluated the role of NAA among methods for 
elemental analysis. Some years ago, a special TECDOC was published on this issue [29]. 
Basically, not so many things have changed over the years although increasingly the 
alternative methods for elemental analysis are being applied in studies in which in the past 
NAA was once the method of choice. The reasons for this development are many, including: 

(1) Equipment for methods based on AAS, ICP and XRF is commonly available, and can be 
installed ‘on-the-spot’, i.e. in the laboratories related to the applied sciences. Thus, there 
is no need for contracting-out services. 

(2) The industry supporting the equipment for these other techniques offers a much stronger 
service and back-up to the buyers than the industry related to nuclear spectroscopy. The 
modern AAS, ICP and XRF equipment comes with user-friendly software packages 
resulting in full analysis reports without the need for extensive calibrations. Moreover, 
there are continuously new developments, such as laser ablation for solid state ICP, 
solid-state AAS and total-reflection XRF. In addition, dedicated sample changers can be 
easily integrated with AAS, ICP and XRF, thus allowing for a large sample throughput. 

(3) The microwave digestion technique has taken away the drawback of sample digestion in 
many applications. 

(4) Many NAA laboratories are not equipped for handling requests for the analysis of a 
large series of samples, or for analysis of several different batches of samples 
simultaneously. Automation in NAA is often under-developed. Sample changers are not 
easily available and typically have to be developed ‘in-house’. Commercially available 
software is not user-friendly enough to process samples and gamma-ray spectra without 
intervention.  

(5) NAA has a reputation of being a technique with a long turnaround time, whereas with 
other methods of analysis results may be available within minutes after introduction of 
the analytical portion. 

(6) Vendors of equipment for other methods of analysis emphasise the ultra low detection 
limits in their promotion of their products. These detection limits are typically based 
upon ‘interference free’ conditions, and do not represent the situation if dealing with 
real samples. Since the NAA ‘family’ usually does not quote the detection limits for 
interference free conditions, the discrepancy between these ultimate values works 
negatively towards the perception of the capabilities of NAA. 

(7) In environmental and health-related sciences there is an on-going interest in the element 
Pb, for which NAA has nothing to offer.  

 
3.2. Characteristics of INAA compared to other methods of elemental analysis 

Although there are many situations in which NAA has theoretically better analytical 
characteristics than other methods of elemental analysis, it is important to remain realistic in 
evaluating the role of NAA. Therefore, the most typical analytical characteristics are revisited 
in view of the alternatives available (see also Annex I): 

(1) Sensitivity and applicability for minor and trace elements in a wide range of matrices. 
This now applies equally well to AAS, ICP(MS) and even TR-XRF. 

(2) Virtual absence of an analytical blank. 
 This is still an advantage of NAA. 
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(3) Relative freedom from matrix and interference effects. 
 This is still an advantage of NAA. 
(4) The possibility of performing non-destructive analysis using instrumental neutron 

activation analysis (INAA). 
 Nowadays laser-ablation ICP, solid-state AAS and TR-XRF offer similar opportunities 

with much shorter turnaround times and sometimes better detection limits. 
(5) High specificity based on the individual characteristics of the induced radionuclides. 

This is still an advantage of NAA. 
(6) The capability of INAA for multi-element determination, often allowing 30 to 40 

elements to be determined in many matrices. 
Applies equally well or even better for ICP and TR-XRF. 

(7) An inherent potential for accuracy compared to other analytical techniques. Since the 
theoretical basis of NAA is well understood, a complete uncertainty budget can be made  

 This is still an advantage of NAA. 
(8) The totally independent nature of the method as a nuclear-based property in contrast to 

the electronic nature of most other analytical techniques. 
 This is still an advantage of NAA. 
(9) The isotopic basis of the method offers a choice of analytically independent routes for 

element determination. 
 Since different nuclides of one element can be determined either simultaneously or via 

different protocols, NAA has a self-verifying character.  
(10) In cases where the induced radionuclides of trace elements are masked by matrix 

activity, radiochemical separation provides interference-free detection limits close to the 
theoretical ones. Thus, in the radiochemical mode of NAA (RNAA), the technique has 
other advantageous features. 

 The laborious activities related to RNAA have to be compared to the simplicity of ICP 
for example, which often offers comparable or even better detection limits. 

(11) Trace and ultra-trace (radio) chemistry can be performed under controlled conditions by 
using inactive carrier additions. 

 Alternatively, stable isotope tracer techniques can be followed if ICP(MS) is available. 
(12) The chemical yield of the separation can be obtained by simply using carrier budgeting 

or the radiotracer method. 
This is still an advantage of NAA. 

 
3.3. Evaluation, and opportunities for INAA 

It can be concluded that in principle one or more of the other analytical techniques may be 
preferred for elemental analysis, thus bypassing the drawbacks of NAA as discussed above. 
However, the evaluation of the characteristics outlined above also makes it clear where to find 
the niches for NAA. These include: 

(1) Studies involving samples for which other methods of analysis have difficulties in the 
calibration step due to chemical matrix effects. This applies particularly to studies in 
which the matrix composition varies considerably in an unpredictable way, or for which 
no matrix-matching reference materials are available. 

(2) Samples in which the trace element levels are so low that contamination or losses may 
occur easily during the sample dissolution or digestion step. 

(3) Analyses requiring a high degree of accuracy, but even more reliability, to ensure full 
comparability of data obtained over a long period of time. 

(4) Samples with a high degree of inhomogeneity, requiring the processing of a relatively 
large analytical portion.  
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(5) Samples in which the element concentration may vary over several orders of magnitude; 
here the linearity of NAA pays off. 

 
It is often argued that NAA has a long turn around time. In principle this may be true. 
However, if analyses can be done on the basis of the measurement of short half-life 
radionuclides (half lives varying from seconds to a few hours), results may be reported even 
on the same day as the receipt of the sample. Similarly, if turn around time is important, 
activation analysts should consider abandoning the traditional analysis protocols involving 
measurements 1 week and 4 weeks after irradiation. These protocols may indeed be optimal to 
obtain complimentary information on as many elements as possible but they have never been 
designed to yield optimal information in an as short as possible turn around time. Modern day 
gamma-ray spectrometers are stable at high count rates allowing for measurements only 2 or 3 
days after irradiation thereby allowing turnaround times of one week or less. In principle, 
prompt-gamma NAA (PGNAA) offers another opportunity to reduce turnaround times 
considerably. Some elements can be determined within a few hours whereas in normal NAA 
decay times of several weeks may be needed. However, detection limits in PGNAA may be 
different than in conventional NAA.  

NAA, in particular INAA has the advantage that the method can handle any new type of 
sample matrix without the need for development of matrix-dedicated procedures, the search 
for matrix-matching reference materials and consequently full matrix-dedicated validation. It 
has been observed that, especially if solid materials have to be analysed, often laboratories 
employing alternative techniques have equal or even longer turnaround times than NAA 
laboratories. 

This advantage of INAA, resulting in a high degree of reliability, can be used at its advantage 
to support regulatory agencies such as for testing of imported and locally produced goods. 

It is also often argued that other methods of analysis are less expensive than NAA. In such 
comparisons and discussions it is important to evaluate the costs properly, including not only 
the sample digestion procedure, but also the costs of the validation of the digestion procedure 
and the costs of validation if chemical matrix interferences or non-linearity occur. Typically, 
NAA becomes economically more attractive than other techniques if more than 5 elements are 
reported and/or if a wide variety of matrices has to be analysed. This is because validation in 
NAA can be done almost ‘once and for all’, unlike other techniques. However, for some 
customers demonstrable reliability and accuracy may be often more important than rapid 
answers.  

3.4. Additional niches 

Except for the many (traditional) areas in which NAA is currently already applied (see 
paragraph 2.2), laboratories employing NAA and gamma-ray spectrometry may also consider 
taking advantage of some other niches. 

The Comprehensive Test Ban Treaty Organization (CTBTO) is evaluating various destructive 
and non-destructive techniques to look for specific elements (fission products) that would be 
volatilized and could be used as evidence of an underground nuclear test. These elements 
include chlorine, bromine, iodine, tin, and certain transition metal chlorides. NAA has the 
sensitivity and multi-element capability required to support some of the CTBTO analysis 
requirements. 
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Neutron activation of machine components and test samples (known as coupons) produce 
radionuclides throughout the material. The rate of release or dissolution can then be monitored 
on-line using gamma-spectrometry. This provides the rate of corrosion or wear as a function 
of various environmental conditions. Conversely, NAA can be used to analyse oils for 
corrosion or wear products in them. 

The IAEA has organized a network of Agency Laboratories for Monitoring Environmental 
Radioactivity [30]. NAA is one of the few methods besides AMS that can provide results for 
129I at environmental levels. This network should provide emergency measurements in the 
case of the accidental or intentional release of radioactivity. The network also should 
participate in proficiency tests to demonstrate the accuracy and response time of the various 
laboratories. 

Many scientific studies can take advantage of stable, but activable isotopic tracers. The 
possibility of measuring very low concentrations of certain elements by INAA makes it 
possible to apply non-radioactive substances if there is a radiological hazard or if the decay 
time of the available radionuclides is too short. The disadvantage is that the system under 
study has to be sampled, which involves a delay that is not always accepted. Stable, activable 
tracers are being used in industry (metallurgy, chemical engineering) and in environmental 
research (e.g. via labelling with enriched lanthanides or elements such as In, Dy, Ir) [31], [32]. 

4. HOW TO INCREASE THE NUMBER OF NAA USERS 

4.1. Introduction 

The enhanced utilization of nuclear reactors for NAA and increased contact with potential 
users should be encouraged. These users could include universities, industry and institutions 
in interdisciplinary fields such as nutrition, biomedicine, material science, environmental 
science, geology. The NAA laboratory should also aim at national goals and to try to make an 
effort to connect the unique features of NAA to the country’s social needs. This is, in fact, a 
very strong impetus to pursue and stimulate NAA activities in a strategic way. The situation in 
China may serve as an example. The Chinese government has set national goals for the 
development of science and technology for the period 2000–2010 which will include six 
areas: environment, human health, population, energy and resources, agriculture and 
materials. Thus, it is reasonable for Chinese NAA laboratories to apply the existing NAA 
methods towards these directions as well as developing further areas. It is also probably the 
sole way for many facilities to obtain government support and to get funds to run and maintain 
their NAA laboratories. 

Naturally each country, especially a developing country, has its own problems to be solved. 
These might include such issues as environmental pollution, epidemic diseases, or the 
shortage of energy and other resources. NAA laboratories should be aware of the important 
role they have in informing society about how nuclear techniques (including NAA) can be 
very beneficial to social advancement and the welfare of the population. 

However, NAA laboratories, and particularly their leaders should also be well aware of the 
type of role the NAA laboratory is expected to fulfil in solving such problems. For instance, is 
the NAA laboratory expected to carry out the entire scientific study, i.e. from problem 
definition to interpretation of the data in view of this definition? If so, the choice of NAA may 
not as much be given by its suitability but rather by its availability. If this is the mission of the 
laboratory, the question arises if the employees of the laboratory may have sufficient 
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background in the applied fields to deal with problem definition and interpretations. 
Moreover, the NAA laboratory may wish to be active in more than one type of study. Clearly, 
nutritional studies require a much different expertise than environmental studies do.  

Or is there going to be a partnership where the NAA laboratory collaborates with specialists 
from the particular field that defines the problem? In which case the NAA laboratory may still 
wish to help define some things like the sampling protocol. 

Finally, there is the alternative to operate NAA in a somewhat commercial way, where there is 
not a significant scientific involvement, and where the work is selected because of analytical 
and economical reasons. 

4.2. Credibility 

A reactor centre, whether it be in a university or other institution, is a substantial investment 
in the human and financial resources of a developing nation. The reactor centre must therefore 
be closely integrated into national programs. It has a great potential to contribute to a large 
number of programmes which in turn lead to socio-economic development while 
strengthening the science and technology base of the country. For example, remarkable 
contributions can be made in the areas of agriculture, water, environment, pollution studies, 
the coastal zone, forensic investigations, health and nutrition, resource estimation and mining. 
If used in collaboration with relevant governmental ministries and institutions the impact can 
be very large. Moreover, while providing data and information there can also be a 
considerable contribution to the development of interdisciplinary scientific effort.  

As a prerequisite, the centre must establish a reputation for accuracy, reliability, high 
throughput, and a willingness to respond to end-user needs and views. This may include the 
need to develop methodologies, improve equipment and software, and try new projects and 
sample types.  

In this process regular validation is vital. This may be done by the use of reference standards 
and by checking NAA analyses with other methods of measurement both in the centre and in 
collaborating institutions.  

Regular publication of results and analyses in peer reviewed scientific journals is also very 
important to demonstrate technical competence. 

4.3. Leadership 

An enthusiastic and knowledgeable person has to be appointed to take the lead in promoting 
NAA activities. This person should, by preference, be someone who has a high position in the 
organisation or institute. This will contribute to his or her respect with potential end-users. 
This person should have, or seek to win, the confidence of the scientific community, the heads 
of scientific and professional government institutions, and members of policy making bodies 
as far as possible.  

The promoter should be aware of the potential opportunities for the use of NAA in solving 
problems of national interest and contributing to scientific development in the nation and 
region. There are likely to be opportunities within the private sector which would be suitable 
for applications using NAA. Also, the promoter should be aware that the use of NAA 
introduces other aspects of the peaceful use of nuclear science and technology. These include 
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radiation protection and familiarity with uses of radiation and radioactive material that can 
have wider interest.  

This vision, together with the mission statement of the laboratory and the existing scientific 
and technical competence should be used to decide if the laboratory can be considered 
sufficiently capable to carry out applied research on its own at a level that it will successfully 
pass a review by peers in this applied field. However, it may be envisioned that an application 
may imply a long lasting involvement of the NAA laboratory, or may require crucial decisions 
related to sampling, sampling processing and interpretation that exceed the capabilities of the 
current staffing. In such cases, the NAA laboratory should consider hosting a scientist from 
that applied field on a semi-permanent basis. Eventually, if work in this field continues, this 
person may become a permanent staff member. As an example, a nutritionist may be attracted 
if the laboratory wants to develop itself as the national reference laboratory for food additive 
studies. A geochemist or mineralogist may be needed if the laboratory continues to support 
studies of national resources. 

If the laboratory envisions involvement in several applied fields without having an 
opportunity to contribute, in depth, to the problem definition and/or interpretation, the 
formation of multi-disciplinary teams is a necessity to bridge the applied scientists with the 
analytical scientists.  

The main task of this promoter to ‘break the ice’, to establish new fields to target within the 
applied sciences and to establish contacts. If a contact results in a deeper level of interest, the 
contact should be delegated to persons who are directly responsible for the conduct of the 
analysis. 

At this next level of contacts, much is asked of the NAA analyst with respect to the attitude 
towards the potential new end-user. It will be important to listen carefully to the end-user’s 
needs and to assess the end-user’s priorities. Is the end-user interested in NAA because of the 
technique’s analytical characteristics or has there been some shortcomings with the techniques 
which are available in-house? Will, for example, multi-element determinations be important 
or is the turn-around time critical? A course or some training on ‘commercial 
communications’ may prove its value for such work. One of the things to learn is that it is 
usually unwise to immediately say that NAA is a solution to any chemical analysis problem 
the customer may have. 

In all contacts it will be important that the representatives of the institute or NAA laboratory 
try to refrain from the use of jargon. End-users are typically not interested in such details as 
the characteristics of the germanium-detector but are more likely to be concerned about the 
way the laboratory organizes sample custody, project planning, costs and how reliability and 
quality are assured. 

4.4. Markets to target 

In attempting to identify potential end-users of NAA a variety of factors must be taken into 
account. These will include the nature of the reactor being used, the irradiation and counting 
facilities available, the industrial base and importance of that particular target industry to the 
country, as well as political considerations. 

The irradiation facilities and reactor fluxes may be important in influencing which potential 
end-users should be approached. If the reactor has the ability of irradiating large numbers of 
samples on a routine basis (i.e., the schedule of the reactor consistently provides irradiations at 
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least several days every two or three weeks) it may be possible to operate on a service basis to 
industries like mineral exploration. If on the other hand, the reactor only has the capacity of 
irradiating a small number of samples irregularly, it would probably be a better idea to 
approach end-users with a demand for a small number of samples. This may be more of a 
research or co-operative effort although a small volume of high value analyses may be useful. 

The industrial base of the country can determine who are the potential end-users. For example, 
if there is no advanced electronics material industry, there is unlikely to be any local interest 
in the analysis of pure silicon. If, however, agriculture is an important industry, then this 
group is a potential end-user. Political considerations are also important. If the reactor is 
located at a university, it is obviously in the best interest of the university to support research 
in university departments. If funding comes from governmental departments, it would be 
advantageous to support government as well. Generally it is useful to show that there are end-
users in all aspects of government, higher education, and industry.  

Information on potential end-users can be derived from governmental authorities, such as 
ministries of the environment, health, trade, industrial development, and agriculture as well as 
their related research institutes. Similarly, the comparable county and municipal authorities 
are sources of information. In addition, data can be gathered from the national geological 
survey, from chambers of commerce, from listings of import/export activities, from university 
programs, and from the activities of other analytical laboratories within the country. Another 
opportunity is to study the catalogues of producers of reference materials. This also provides a 
good clue to the fields in which NAA may be of value. Generally, reference material programs 
will only produce such materials where a demand is foreseen. In effect, they are doing part of 
the market research. 

Once an application has been identified, it becomes important to collect background 
information, or to do some market research. One important item is to gain some basic 
understanding as to why the end-user needs trace element data, and what sorts of analyses 
would be of added value to him. Another opportunity is to collect annual reports, brochures or 
any other relevant report of the targeted new end-user. 

Once interest is shown in the technique and applications, it is usually a good idea to obtain 
some material to test the application. The quality of the results obtained and the speed of 
analysis are important to show the potential of the technique. Generally, samples should be 
analysed rapidly and the results discussed with the end user. 

4.5. Presentation 

The first presentation of the laboratory to the potential end user may be of crucial importance. 
In this presentation the laboratory has to demonstrate what NAA has to offer to the end user, 
and how the laboratory has made adjustments to serve the new customer as much as possible. 
The presentation should be directed to an audience which is not knowledgeable on NAA. In 
all aspects of the presentation it should be remembered that the focus should be on “why the 
customer should be interested in NAA” rather than “what are the attractive aspects of NAA 
from the analyst’s viewpoint?”. 

A typical time frame for such a presentation is 10-15 minutes. A good set of transparencies or 
slides should be prepared using a large font to ensure readability. This also provides a 
safeguard against putting too much information onto one sheet. Keep graphs and tables as 
simple as possible. Round-off data where possible and present only data which may be of 
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value and interest to laymen. One may consider preparing several types of introductions. For 
example, one could be on the principles of the technique, one a review on applications and 
one directly focused to the field of interest being targeted. To enhance the impact of a 
presentation, practice in front of a camera using videotape is recommended. 

Additionally, the laboratory should have a brochure to be handed out. There are numerous 
variations on this theme, but most of them are usually not larger than 2–4 pages, with 
relatively little text, some interesting photographs and information on addresses and people to 
contact. The latter should be left off if there is frequent turnover of staff. If the Internet is 
available in the country, then a facility web site could also be of benefit. 

Many institutions routinely prepare an annual report. Annual reports are sometimes 
appreciated in the latter stages of developing a new user, and may serve to enhance the 
credibility of the laboratory, especially if references are given to existing partners in research 
and customers. 

4.6. Management 

Because of the likely scale and the numbers of samples and individuals involved, precise 
planning and project management are essential. This will include normal operational 
flexibility, but particular attention needs to be paid to sample management, custody, and 
storage. Details of samples must be maintained.  

From time to time there will be a turnover in staff so it is necessary to have complete 
documentation of procedures (including laboratory procedures), processes, and operations. All 
manuals must be prepared, verified, updated, and readily accessible. This information must be 
transmitted to all workers and their successors. Each centre should have comprehensive safety 
procedures and a safety manual which must be strictly followed.  

Such programmes are assisted by in-house and overseas training from time to time. Visits by 
experts from the IAEA and collaborating laboratories and organizations can be helpful. 

4.7. Networking 

Enhanced interest in NAA can also be assisted by building a network of contacts within 
various fields of science and technology. To this end, the promoter and colleagues (e.g., the 
head of the NAA laboratory) should attend (inter-) national non-nuclear meetings, such as 
those in chemistry, biology, agriculture, archaeology, geology, and environmental science. 
Even civil engineering science may be considered since NAA may be of use in studies of 
sewage sludge treatment. Papers and posters on NAA efforts should be presented at such 
meetings. Reviews may be given on what has been done worldwide in that particular applied 
science. It all serves as a stepping stone to establish the network of contacts and to introduce 
the laboratory and the techniques at other institutions and universities. In fact, every 
opportunity should be used to elucidate and to introduce the unique merits of NAA to 
scientists in various disciplinary fields, to officials responsible for the allocation of research 
funds, and to managers in the industrial community. 

Another opportunity to raise interest in NAA is to organize an open house and to invite some 
key persons from applied fields. Such an activity is often willingly accepted since non-nuclear 
scientists are usually interested in seeing a nuclear research reactor as well. In some cases, it 
may be worthwhile to send an ‘eye-catching’ application or a special NAA analysis result to a 
newspaper as well. 
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4.8. Publicity 

It should be realised that most end users may probably not read the media which are used by 
the NAA society, such as the Journal of Radioanalytical Nuclear Chemistry, Nuclear 
Instruments and Methods, the Journal of Applied Radiation Isotopes, and Analytical 
Chemistry. Sometimes this is because of language difficulties. Nor will they necessarily be 
aware of the activities of the IAEA and the information supplied by this organization. This 
also means that end users may not be aware of the characteristics of NAA and its potential. 
Indeed they may not even be aware of the existence of such a method for elemental analysis.  

Public awareness is important to maintain the interest in, and the growth of, the centre. One 
way of ensuring this is by the centre providing support and encouraging publication of articles 
in local journals and the news media. These articles could document and explain 
achievements of national importance such as environmental findings, agricultural 
developments, as well as archaeological and resource studies. Organization and participation 
in national and regional science events including seminars, conferences and national debates 
will maintain public interest. 

Another group of end users to target is laboratory technicians. These are the persons who deal 
with the everyday work and the problems associated with the samples they receive. This group 
of people is best addressed via a simple 1–2 page article in a trade or a technical journal which 
can be found in almost every country. These typically have names such as ‘Laboratory News’, 
or ‘Research and Development’. Newsletters from a chemical society or something similar 
may also serve this purpose. 

In such papers (which should be written in the national language) a balance should be found 
between scientific content and accessibility for the non-expert. Emphasis should be on the 
typical characteristics of NAA (both advantages and limitations). It is worthwhile putting this 
in a context of the limitations of other techniques, under such topics as non-destructivity, 
matrix independence, linearity and dynamic range. 

Support for science teachers and science education is also an important contribution to the 
national goals. 

In the end, it is often the public that pays for the existence and programs of the reactor centre. 
Therefore, the centre’s output must address issues of public interest and take into account the 
needs of the private sector. This must be reflected in the setting of goals and priorities for the 
centre. Goal setting must take into account the overall national needs. A useful step in this 
process is the preparation of a strategic plan that covers a five year period and is reviewed 
annually. This requires full discussion and collaboration with peers in other scientific fields 
and with policy makers. 

5. HOW TO REDUCE COSTS AND TO MAINTAIN 
QUALITY AND RELIABILITY OF NAA 

The total costs of an NAA procedure is composed of several factors. These include: reactor 
costs (consumption of neutrons), costs of equipment (depreciation), costs of consumables and 
chemicals (vials, reference materials and chemicals, particularly if chemical separations are 
applied) and labour costs. It is useful to calculate the analysis costs in order to assess the 
laboratory’s competitive position. The total analysis cost does not necessarily have to be the 
price charged. A laboratory may consider charging a price lower than the total costs if it is 
more important to have end-users than to be fully sustainable on this income source alone. As 
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such, the reactor costs may be dropped (which is often done, it being argued that ‘the reactor 
and the neutrons are there anyhow’). Alternatively, a laboratory may charge a higher price 
than just the break-even costs if competition allows. 

Cost analysis also clarifies which components need to be improved to reduce the cost. If the 
reactor costs is important, short irradiations and measurements at a higher counting efficiency 
may be considered. Thus, a new and larger Ge detector (e.g. a well-type Ge detector) may 
suddenly become an economically attractive alternative, especially on the long term. Also the 
use of short half-life radionuclides may then contribute to reduce the overall costs. 

If the depreciation costs of equipment is the dominant factor, shorter counting times, and thus 
higher throughput, should be considered. Automation via sample changers is another way to 
increase the throughput and thus the contribution of equipment in the analysis costs. 
Eventually, larger sample masses and higher induced activity may be considered. Shorter 
counting times may result in a poorer precision but often there is no need to count until peak 
statistics are better than 1%. Ten percent or perhaps even 25% counting statistics may already 
be enough to satisfy the customer. It implies a dramatic reduction of counting time and 
increase of throughput. 

There are only a few remedies if the costs of vials, reference materials and chemicals are 
determining the analysis costs. Reference materials are necessary for validation of methods, 
and sometimes for internal quality control. In case of the latter, a laboratory may consider 
producing its own internal quality control material, or establishing a network with other 
regional laboratories for exchanging samples.  

Labour costs may be a determining component in the analysis costs. Labour may be related to 
the sample preparation step, preparation of standards, chemical separations, sample changing 
and spectrum analysis and interpretation. Labour costs related to preparation of standards and 
spectrum analysis/interpretation may be reduced if the number of elements to be reported is 
reduced. It has been observed (see Annex II) that many customers are interested in a few 
elements only rather than needing full multi-element scans to be done. In such a case, the 
simple relative method for calibration has to be preferred above more sophisticated 
comparator or k0 methods that require more calibrations and dedicated software. Many of the 
software modules for NAA, distributed by vendors of gamma-ray spectroscopy equipment, are 
capable of producing element concentrations if the relative method is applied. 

Labour costs can also be reduced by further automation. However, only a few sample 
changers are commercially available, requiring a considerable investment and often extra 
modifications to accommodate the laboratory’s specific vials. Still, simple changers based on 
a rotating wheel can be developed in-house at relatively low costs, and these would at least 
allow multiple measurements overnight and on the weekends. 

Sometimes laboratories choose to reduce labour costs by having the analysis done by lower 
paid staff and sometimes by hiring students. On the other hand, this development has to be 
also seen in the light of the need to demonstrate technical competence. Sometimes 
components of the work such as sample weighing are given to lower grade personnel than 
more skilled work such as spectrum interpretation or chemical separation. In all cases, the 
quality of the work has to be monitored carefully. In addition schedules have to be in place for 
in-house training whereas there should be clear and unambiguous, quantified criteria for 
taking decisions at hold points in the procedures, and for actions in situations of non-
conformance. 
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Whatever measures are taken to reduce the costs of the analysis, such as reduction of 
irradiation/counting/turnaround times, reduction of labour, less expensive quality control 
material, the laboratory should have quality assurance measures in place. These are often 
interpreted by customers as ‘reliability’. A first step in this direction is a full assessment of all 
potential sources of error, not just the technical but also the organisational. Then, the 
laboratory should decide how to monitor these sources of error, and what the criteria should 
be to determine if the process can be continued or if it has to be interrupted.  

Quality control and quality assurance principles are often already to some extent present in 
many laboratories. The IAEA offers various opportunities for further improvement in this 
respect. A good tool to monitor the quality of the process is by control charts. As has been 
demonstrated [33], control charts can not only be used to monitor the trend of, for example a 
concentration with time, but even the performance a certain employee with time or in 
comparison with other employees.  

6. CASE STUDY OF AN NAA SERVICE LABORATORY 

The Nuclear Analytical Methods research group supervises the facilities of the laboratory for 
INAA [34] at Delft1. The main task of this group is research and development of physical and 
mathematical methods of radioanalysis, with the emphasis on gamma-ray spectrometry and 
neutron activation analysis.  

For a long time, the facilities have been made available for 'routine' use to non-radiochemists 
from other universities. Interactively operating software and manuals enable these guests to 
perform INAA on their own after a short introductory period. No special demands were set to 
the educational level of the users and universities were not charged for use of the facilities. 
However, in the case of extensive projects the partner university occasionally contributed to the 
costs of the analyses by payment in kind, for example via the purchase of components of 
gamma-ray spectrometers. 

In the early 1980s, other (governmental) research institutes gained interest in the potential of 
INAA and co-operation started on projects with a large sample throughput. In these projects 
some financial support was included. Over the years, the number of requests for multi-element 
determinations via INAA grew steadily, not only from the universities, which were now also 
routinely charged for a part of the total analysis cost, but also from industry.  

Difficulties arose for the Nuclear Analytical Methods group since the group had to balance its 
efforts between 'making money' to relieve the department’s financial situation, and innovative 
research and development. It was decided upon an organizational separation of the INAA 
services from the research group. However, the research group retained responsibility for 
technical support and provided advice on the feasibility and optimal conduct of analyses, and on 
the quality assurance of the analyses. Both for quality assurance reasons as well as because of 
customer requests (international acceptance of results), a quality system complying with 
EN45001 standard (closely following ISO/IEC Guide 25) was developed, and accreditation was 
                                                 
1 The Institute operates a 2 MW light water reactor with 100 h week cycle, and with normal pneumatic and fast 
rabbit systems and a large sample facility. The counting facilities for INAA comprise 3 well types with sample 
changers, 3 coaxials with sample changers, 2 stand alone coaxials, one big coaxial for the big samples, one coaxial 
with sample changer at one of the fast rabbit systems and a stand-alone coaxial with the other. All detectors are 
linked to a local area computer network with in-house developed spectrometer interfaces. In-house software was 
developed for gamma-ray spectrum analysis and interpretation. Quantification is done via the single comparator 
method. The total capacity of the spectrometers allows for 15,000 samples per year.  



16 

achieved in early 1993. This also enabled the laboratory to remain competitive with other 
commercial service laboratories 

The analysts in the commercial INAA group have either fixed or temporary contracts with their 
salaries paid from the revenues of the analyses. The group was initially managed by the 
institute’s commercial services manager with administrative support. Planning systems exist to 
allow for the analysts’ capacity and the use of the irradiation and counting facilities. One of the 
analysts has a coordinating task that includes the distribution of samples and advising the 
manager on the remaining capacity. The manager was responsible for administration, marketing 
research and sales promotion. Since the manager had no background in NAA, often one of the 
staff members of the research group joined the meetings with customers. Finally, it was decided 
in 1996 to abandon this position and to return the commercial group’s management to the 
research group leader. 

The laboratory for INAA identifies ‘external’ and ‘internal’ customers. Scientists from other 
universities or research establishments, governmental bodies and industry form the first 
category. The internal customers are scientists within the home institute, mainly from the 
Department of Radiochemistry. Some of these internal customers are trained by the laboratory 
to carry out the analyses on their own. The external customers are fully charged for the 
analyses whereas the internal customers only pay for the consumables (capsules, internal 
quality control samples etc). The revenues of the services return, except for an overhead 
charge by the institute, to the laboratory for INAA in order to accommodate the salary costs of 
the extra technicians and the other costs related to the analysis such as consumables, 
depreciation of equipment, costs of the quality system and costs for marketing activities. It 
should be noted that these revenues are ear-marked for usage. 

Each analyst can handle about 1000 samples for multi-element analyses per year. An analysis 
may comprise two irradiations and three measurements. Samples are handled in batches of 14. 
To each batch a control sample and a blank is added together with neutron flux monitors. 
Measurements are performed on gamma-ray spectrometers with automated sample changers. 
Three of these spectrometers are equipped with well-type detectors. An extensive quality control 
has been developed, which has already been partly performed by the locally written software 
itself. If the results of the first control by the analyst are in accordance with the criteria, the report 
is double-checked by one of the staff members of the research group. Only after this approval 
will the manager release the report to the customer. 

Typically, the laboratory carries out approximately 2000–2500 analyses per year for external 
customers and approximately 1000 analyses per year for internal customers. In Annex II an 
overview is given of the types of samples analysed and the analysis protocols. 

Except for the request from the market sector, the quality system was also developed because 
of an internal driving force, viz. to improve in a structured manner the organization of the 
external (‘commercial’) services. A different approach had to be followed for the planning, 
conduct of analysis, quality assurance, documentation and customer satisfaction. In such 
external services one cannot afford to repeat analyses because of organizational mistakes. 
Moreover, the quality of the results should be immediately and unambiguously established. 
Such an attitude to work is often not entirely present in a pure research environment. Internal 
and external audits, and a customer satisfaction evaluation have shown that the services are 
carried out in a manner that satisfies the customers and does not result in complaints. 
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7. USE OF NAA IN INDUSTRY 

Neutron activation analysis has been widely used in industry and over the years has played a 
key role in the development of manufacturing process as well as monitoring of the process 
flow. In this context NAA has been utilized both in research and development (R & D), and in 
the factory as a flexible analytical tool. For instance, Dow Chemical owns and operates a 
research reactor for analytical measurements of samples generated in both R & D, and 
manufacturing area in its plant in Midland, Michigan, USA. However, most industries do not 
have reactors on their campus but routinely use an off site reactor. The NAA laboratory of 
DSM Research in The Netherlands uses the nearby (60 km) reactor in Belgium for instance. 
Other industries often have in-house neutron sources such as a 252Cf used primarily for NAA. 
Such sources are also intensively applied for on-line bulk measurements.  

In most industrial materials analysis laboratories NAA is part of a number of analytical 
techniques such as ICP-AES, ICP-MS, AA, SIMS, XRF, TXRF. Analysis of complex 
industrial samples may require data from each of these methods to provide a clear picture of 
the materials issues involved. With the improvement of classical analytical techniques, and 
the introduction of new techniques e.g. TXRF the role of NAA continues to be a key bench 
mark technique that provides accurate and reliable data. The strength of the NAA in bulk 
analysis is balanced by its weakness in providing surface sensitive or spatially resolved 
analysis as is required by many applications. 

The list of typical applications in industry includes the analysis of catalysts, electronic 
materials (such as high purity Si, Ga and semiconductor materials), many types of polymers, 
ceramics, emulsions, slurries, liquid hydrocarbons, halogens, agricultural chemicals.  

The principal advantages of NAA over other analytical techniques (such as ICP-MS) are 
considered to be (i) little sample preparation, thereby minimising the possibility for 
contamination; (ii) adequate sensitivity for most elements and (iii) a relatively rapid analysis 
with turnaround times of only a few days. The latter may be surprising, but it should be borne 
in mind that often new sample types are offered for analysis. Many other methods, although 
instrumentally much faster than NAA, may require quite some time for assessing the quality 
of chemical destruction steps, method calibration and/or validation.  

Industries usually do not apply NAA in an universal way, as often is done by many university 
NAA laboratories, but select the method for its specific strengths for a given application. 
Examples of such cases are: the determination of trace impurities in high purity Si in order to 
determine contamination; the determination of impurities in plastics to avoid complicated 
destruction steps; the determination of halogens (F, Br) in plastics; and the assessment of 
volatile elements such as Hg and As in liquid hydrocarbons. 

The examples demonstrate that there are many analytical problems in which NAA may very 
well be the only (economical) method with desired characteristics. NAA is being selected 
from a wide variety of methods directly accessible which are often considered as a threat to 
NAA. It emphasizes the opportunities for NAA laboratories at universities and research 
institutions to serve the need of their national industry. Of course, it should be borne in mind 
that in such a case industry may impose specific demands regarding turnaround time, quality 
control and quality assurance and reduction of analysis costs. There even may be a conflict 
with reactor operating schedules if analyses have to provided rapidly. However, such 
problems can be solved. 
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Many industries need on-line analysis and process control. INAA has certain advantages for 
this because of the high penetrating power of both the incident neutrons and the emitted 
gamma-rays. This also reduces the effect of inhomogeneities by particles or in slurries. 
Systems usually consist of a conveyor belt which passes a neutron generator or an isotopic 
neutron source. A INAA laboratory associated with a reactor center may contribute to the 
development and optimization of such systems, taking full advantage of their expertise. Such 
applications do not directly contribute to an enhancement of the use of the reactor but any 
such a collaboration may ultimately result in (off-line) analytical support by conventional 
INAA. 

The continued use of NAA in industries critically depend on having NAA trained 
professionals in the industrial organizations. It has been used most widely and innovatively 
when a NAA professional was part of the materials analysis laboratory. Interaction of the 
NAA professional at the research reactor with the industrial analytical laboratories is also very 
important for enhanced use of the technique. However, this is not quite as effective as having 
someone inside the industrial analytical laboratory. Therefore training of young professionals 
in NAA, and other nuclear analytical methods is a key for the increasing use of the research 
reactors for materials analysis needs. 

8. NAA USING LOW POWER REACTORS 

Low power reactors are here defined as reactors with a peak thermal neutron flux of less than 
1 × 1013 cm-2s-1. For practical execution of NAA, a reactor should have a peak neutron flux of 
at least 1011 cm-2s-1. The IAEA Research Reactor Database, lists 55 reactors that fit into this 
category out of 278 reactors operating world wide. Twenty two reactors have a peak thermal 
flux from >1011 to <=1012 cm-2s-1, and 33 reactors have a peak thermal fluxes from >1012 to 
<=1013 cm-2s-1. Typical low power reactor types are some TRIGAs, SLOWPOKEs and 
MNSRs. 

Although the reactors have been classified on basis of their peak thermal neutron flux, the 
available neutron flux in the irradiation facilities is typically a factor of 2–5 lower. A neutron 
flux in the order of 0.5 to 5 × 1012 cm-2s-1 is still quite acceptable for many neutron activation 
analysis purposes, as has been demonstrated by many laboratories. Moreover, such low 
neutron flux reactor facilities offer additional advantages for NAA. 

(1) They typically have a relatively low gamma-ray dose, allowing for relatively long 
irradiations with samples packed in plastic foils or capsules. 

(2) They have low fuel burn-up, resulting in a much higher neutron flux and neutron 
spectrum stability with time. Thus, fewer re-calibrations are required. However, whereas 
the SLOWPOKE reactor type is well known for its high stability over time, the stability 
of the comparable MNSR type reactor is less, and re-calibrations and flux measurements 
are more frequently needed. 

(3) Smaller reactors often have less demand for other types of experiments or isotope 
production. Thus, reactor schedules can be more reliable than with multi-purpose high 
flux reactors in which the reactor schedule may have to be tuned to the wishes of the 
different users. 

(4) Often, reactors such as SLOWPOKEs and MNSRs require lower overhead costs since 
fewer reactor operators may be required, whilst the entire installation is less 
complicated. 
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(5) In addition, for SLOWPOKE and MNSR reactor types the reactor operator training for 
licensing is relatively simple, thus making the facility much more accessible and 
reducing the operating costs. 

(6) Not only is SLOWPOKE simple to operate but it provides a relatively large and 
remarkably stable neutron flux over long periods of time. The variation of the flux with 
respect to the irradiation site and sample position in the irradiation capsule is less than 
3%. The flux stability allows the use of equation (1) in which the mass m, of a particular 
element is calculated from the peak area, A, 
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 where:  k = z � NA � � M-1/�, 
 z = detector efficiency, 
 � = abundance of the activated nuclide, 
 NA= Avogadro's number = 6.023 x 1023

,  
 � = isotopic activation cross section, 
 � = neutron flux, 
 M = atomic weight of the irradiated element, 
 tI, td and tc are the times of irradiation, decay and counting respectively.  

 The values of k are determined by the use of suitable single element standards a or 
combination of up to four interference-free elements. 

(7) The relatively low neutron flux can easily be accommodated for by longer irradiations, 
cyclic and pseudo cyclic NAA procedures (see Annex I, paragraph I.3.5.) or by taking 
larger sample masses (see Annex I, paragraph I.3.1). Samples with masses of 1–5 gram, 
which are at least ten times the typical sample mass used in NAA, may be used without 
too many problems with respect to neutron and gamma-ray self-attenuation. Moreover, 
the extent of both these effects can easily be assessed experimentally. 

 
However, because of the relatively low neutron flux, small reactor types are less suitable for 
studies of impurities in high purity materials, such as Si. For such analyses, a very high 
neutron dose rate is necessary, often accomplished by many hours’ irradiation in neutron 
fluxes > 5 × 1013 cm-2s-1.  

Annex II includes two contributions with examples of NAA using small reactors. More 
information is available at various Internet web-sites related to SLOWPOKE reactors. 

9. CONCLUSIONS 

Neutron activation analysis in its various forms is still active and there are good prospects in 
developing countries for long-term growth. This can be achieved by a more effective use of 
existing irradiation and counting facilities, a better end-user focus, and perhaps marginal 
improvements in equipment and techniques. Therefore, it is recommended that the Member 
States provide financial and other assistance to enhance the effectiveness of their laboratories 
and to provide assistance through the IAEA in identifying fields of application where neutron 
activation analysis can be of enhanced value to countries. 

In view of the above, it is recommended that Member States promote the use of neutron 
activation analysis using their low and medium flux reactors. The focus should be on:  

(1) Reduction of the total analysis time by developing neutron activation analysis based on 
short lived radionuclides. 
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(2) Development of optimised analysis protocols. Use of larger sample quantities to 
compensate for low neutron fluxes and to reduce counting times. 

(3) Use of neutron activation analysis for validation of other methods of elemental analysis. 
(4) Feasibility studies for samples related to industrial production, such as fossil fuels, 

mining, food, agricultural products, and waste management and recycling. 
(5) Optimization of neutron beam quality for prompt gamma neutron activation analysis, 

which provides additional elements and/or may result in reduction of analysis time.  
 
Close co-operation between experienced neutron activation analysis laboratories and new or 
inexperienced facilities associated with research reactors is highly desirable. 
 
From the experience accumulated to date on the usage of reactors for neutron activation 
analysis in Canada, China, Jamaica and others it is concluded that low flux research reactors 
are a good choice for developing countries wishing to embark on neutron activation analysis. 
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ANNEX I 
METHODOLOGY OF NEUTRON ACTIVATION ANALYSIS  

In this Annex, those aspects of the methodology of NAA are presented that may be of value in 
finding ways to improve utilization of the method. For more details on the methodology it is 
recommended to consult the various textbooks [I-1 to I-3].  

I.1. Neutron activation analysis procedure 
 
An NAA procedure may involve some or all of the following steps: 

(1) Sampling; 
(2) Pre-irradiation sample treatment (such as cleaning, drying or ashing, pre-concentration 

of elements of interest or elimination of interfering elements, sub-sampling and 
packing); 

(3) Irradiation (and prompt �-ray counting in PGNAA); 
(4) Radiochemical separation (only in RNAA); 
(5) Radioactivity measurement; 
(6) Elemental concentration calculation; 
(7) Critical evaluation of results and preparation of the NAA report. 
 
I.2. Concentration calibration 
 
Calibration or standardization is the determination of the proportionality factors that relate the 
measured activity (peak-area in the �-ray spectrum) to the amounts of the elements present in 
the sample under experimental conditions. Basically there are two standardizations used in 
NAA, viz. the relative and the non-relative methods. 

I.2.1. The relative method 
 
Sample and element standards are irradiated simultaneously (or sequentially in short half-life 
NAA with a co-irradiated neutron flux monitor) and later measured under the same counting 
conditions. The concentration of the element(s) of interest is calculated by comparison of the 
measured activity between the sample and the standard. The relative method promises the 
highest accuracy when the standard and sample match each other well in composition, 
irradiation and counting conditions. On the other hand, the relative standardization on the 
basis of element standards is not immediately suitable when aiming at the full multi-element 
power of INAA. It is virtually impossible to produce a multi-element standard containing 
known amounts of all detectable elements with sufficient accuracy in a volume closely 
matching the matrix, size and shape of the sample. Some laboratories therefore prefer to use 
(certified) reference materials as their standards. This has consequences for the final 
uncertainty of the results due to propagation of the uncertainty in the reference value. For 
many elements only indicative concentrations are known.  

I.2.2. The non-relative method 

Multi-element INAA is feasible in the non-relative method or single comparator method [I-4]. 
Assuming stability in time of all relevant experimental conditions, standards for all elements 
are co-irradiated each in turn with the chosen single comparator element. Once the calibration 
factors for all of the elements relative to the comparator element have been determined (the k-
factor), only the comparator element has to be used in routine measurements instead of 
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individual standards for each element. The k-factors can be determined accurately enough so 
that the single comparator method offers an accuracy comparable to that in the relative 
method. However, the k-factors are only valid for a specific detector, a specific sample shape, 
a specific counting geometry and a specific irradiation facility. An example of this single 
comparator method using zinc as the comparator element is given in [I-5].  

At the Institute for Nuclear Sciences in Ghent, Belgium, an attempt has been made to define 
and determine the k-factors which should be independent of neutron flux parameters as well 
as of spectrometer characteristics. This so called k0-standardization method is well established 
[I-6], [I-7]. It calculates the concentration for element(s) of interest from co-irradiated 
comparators and experimentally determined neutron flux parameters and the detector 
efficiency. The k0-method has been implemented at various laboratories, and the user 
community has established its own web-site for exchange of information 
(http://iriaxp.iri.tudelft.nl/~rc/fmr/k0www/k0conten.htm).  

As opposed to the relative method, any form of the non-relative method requires good 
knowledge about reactor neutron flux as well as the detector's peak and total efficiency. A 
reliable NAA software package is necessary to deal with burn-up, cascade coincidence effects, 
pile-up and dead-time corrections, peak efficiency evaluation for the actual sample and 
comparator counting condition, and, eventually, to calculate the needed neutron flux 
parameters and element concentration.  

I.3. Various forms of activation analyses 
 
I.3.1. Instrumental neutron activation analysis 
 
INAA is often referred to as non-destructive NAA or as NAA without post-irradiation 
radiochemical separation. It is a multi-elemental method whereby �-ray spectroscopy is 
applied to radioactivity measurements. INAA promises reliable analytical results, because the 
possible error due to contamination and element loss can be easily avoided.  

INAA is capable of analysing relatively large samples varying from a several grams to several 
kilograms [I-8], [I-9].  

I.3.2. Radiochemical neutron activation analysis 
 
RNAA involves a post-irradiation radiochemical separation procedure to isolate one or a 
group of elements, or to eliminate interfering nuclides. Application of a carrier and hold-back 
carrier makes chemical separations much more convenient. The chemical yield can be 
calculated from re-determination of the added carrier when it is a stable isotope. When the 
carrier is a radioactive one, chemical yield can be obtained directly from the sample �-ray 
measurement.  

I.3.3. Epithermal neutron activation analysis 

In ENAA, a sample is irradiated in an epithermal neutron flux by covering it with cadmium 
foil or putting it in a borated capsule. Some reactors provide epithermal irradiation facilities 
by having the irradiation position suitably surrounded by such materials. Q0 is defined as the 
resonance-to-thermal cross-section ratio. ENAA is mainly used to determine a high Q0 
nuclide(s) when a low Q0 nuclide(s) is the interference. When irradiated in an epithermal 
neutron flux, a high Q0 nuclide like 114Cd (n, �)115Cd (Q0 = 39.6) will be more activated than 
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a low Q0 nuclide like 23Na (n, �) 24Na (Q0 = 0.59) if compared to the activation in ‘normal’ 
NAA. Consequently, a lower detection limit for Cd determination can be expected.  

I.3.4. Prompt gamma-ray neutron activation analysis 
 
In PGNAA, the prompt �-rays emitted during the nuclear reaction are measured. It is a non-
destructive and multi-elemental method [I-10], [I-11]. PGNAA may provide elemental 
contents and depth profiling for elements H, B, C, N, P, S, Cd, Pb and some rare earth 
elements, especially Sm and Gd. Most of these elements either cannot, or cannot easily, be 
determined with normal NAA, so PGNAA is a complementary method. To carry out PGNAA, 
a neutron beam guide and a �-ray detector assembly are needed. 

I.3.5. Cyclic neutron activation analysis 
 
This is most frequently used in short half-life NAA. In this method, a sample is repeatedly 
activated, and the �-ray spectra after each irradiation are summed [I-12]. The repetition can 
continue till the accumulated activity from long lived nuclides is too high. Cyclic NAA is used 
to improve the counting statistics of the peak-area of short-lived nuclides. To avoid the 
accumulation of the longer-lived nuclide activity, this cyclic activation can be performed 
using a series of fresh samples: pseudo-cyclic NAA [I-13].  

I.4. Detection limits  
 
The detection limit represents the ability of a given NAA procedure to determine the 
minimum amounts of an element reliably. The detection limit depends on the irradiation, the 
decay and the counting conditions. It also depends on the interference situation including such 
things as the ambient background, the Compton continuum from higher energy �-rays, as well 
as any �-ray spectrum interferences from such factors as the blank from pre-irradiation 
treatment and from packing materials. The detection limit is often calculated using Currie's 
formula [I-14]:  

DL = 2.71 + 4.65 B  

where DL is the detection limit and B is the background under a �-ray peak. It is valid only 
when the �-ray background (counting statistical error) is the major interference. 

However, practically, the INAA detection limits depend on: 

(1) The amount of material to be irradiated and to be counted. This is often set by 
availability, sample encapsulation aspects and safety limits both related to irradiation 
(irradiation containers) and counting (e.g. with Ge well-type detectors), and possibly 
because of neutron self-shielding and gamma-ray self-absorption effects. For these 
reasons practically the sample mass is often limited to approximately 250 mg. 

(2) The neutron fluxes. These are clearly set by the available irradiation facilities.  
(3) The duration of the irradiation time. This is set by practical aspects, such as the 

limitations in total irradiation dose of the plastic containers because of radiation 
damage. The maximum irradiation time for polyethylene capsules is usually limited to 
several hours, for instance 5 hours at 5 × 1017 m-2s-1. 

(4) The total induced radioactivity that can be measured is set by the state-of-the-art of 
counting and signal processing equipment, with additional radiation dose and shielding 
considerations. As an example, the maximum activity at the moment of counting may 
have to be limited to approximately 250 kBq. 
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(5) The duration of the counting time. A very long counting time may set limits to the 
number of samples processed simultaneously in case the radioactivity decays 
considerably during this counting time. Moreover, it reduces sample throughput.  

(6) The total turn-around time. Although sometimes better detection limits may be obtained 
at long decay times, the demands regarding the turn-around time often imply that a 
compromise has to be found between the longest permissible decay time and customer 
satisfaction.  

(7) The detector size, counting geometry and background shielding. The detector's 
characteristics may be set in advance by availability but several options exist.  

 
Table I. Detection limits in mg.kg-1 as observed in plant material and soil material 

 Plant  Soil  Plant Soil 

Na 2 10 K 200 1500 

Ca 700 4000 Sc 0.001 0.02 

Cr 1 1 Fe 8 100 

Co 0.02 0.3 Ni 2 30 

Zn 0.4 6 Ga 2 10 

As 0.2 0.8 Se 0.1 1 

Br 0.3 0.8 Rb 0.4 6 

Sr 5 60 Zr 5 80 

Mo 4 10 Ag 0.2 2 

Cd 3 8 Sn 10 20 

Sb 0.02 0.2 Te 0.3 3 

Cs 0.02 0.3 Ba 10 40 

La 0.1 0.3 Ce 0.2 1 

Nd 0.7 8 Sm 0.01 0.03 

Eu 0.006 0.05 Tb 0.008 0.1 

Yb 0.03 0.2 Lu 0.004 0.02 

Hf 0.01 0.1 Ta 0.01 0.2 

W 0.3 1 Re 0.08 0.2 

Os 0.1 0.6 Ir 0.0006 0.004 

Au 0.003 0.01 Hg 0.05 0.4 

Th 0.01 0.1 U 0.2 2 

Experimental conditions:   plant: tir = 4 h @ 5 * 1016 m-2s-1, td = 5 days, tm = 0.5 h at coaxial detector, 
followed at td = 3 weeks and tm = 2 h at well-type detector; sample size = 200 mg; soil: tir = 1.5 h @ 5 * 
1016 m-2s-1, td = 5 days, tm = 1 h at coaxial detector followed at td = 3 weeks and tm = 1 h at well-type 
detector; sample size = 200 mg. 
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It all emphasizes that a limit of detection for a given element by INAA may be different for 
each individual type of material, and analysis conditions. In Table I [I-15] are given, as an 
indication, typical detection limits as derived from the analysis of a plant and a soil material. 
 
I.5. Quality control and quality assurance 
 
The physical nature of NAA, and the identifiable potential sources of error allow for much 
preventive quality control and quality assurance as well as corrective actions if needed. For 
any NAA laboratory it is of the utmost importance to draft a list of these potential sources of 
error. These can include analytical (e.g., quality of chemicals), technical (e.g., geometry 
effects) and organizational (e.g., transposing errors and other human errors) factors. Quality 
assurance activities should be embedded in a managerial quality system. To this effort, 
suggested readings are References [I-16], [I-17]. 

I.6. Analytical quality 
 
The IAEA provides NAA laboratories several means to assess the analytical quality of their 
data. These include certified reference materials and opportunities to participate in 
intercomparison studies. It should be noted however, that certified reference materials are a 
precious commodity. In principle, they should only be used for verification of the analytical 
quality and eventually to serve as a tool for traceability. The materials should not be used for 
technique calibration (or standardization) because of the subsequential high consumption rate 
and the consequences for the propagation of uncertainty. For day-to-day quality control a 
laboratory may easily develop its own in-house control standards. Material, resulting from 
intercomparison rounds may be used for this. 
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IS ACTIVATION ANALYSIS STILL ACTIVE? 
 

Zhifang Chai 
Institute of High Energy Physics, Chinese Academy of Sciences, 
Beijing, China 
 
Abstract. This paper reviews some aspects of neutron activation analysis (NAA), covering instrumental neutron 
activation analysis (INAA), k0 method, prompt gamma-ray neutron activation analysis (PGNAA), radiochemical 
neutron activation analysis (RNAA) and molecular activation analysis (MAA). The comparison of neutron 
activation analysis with other analytical techniques are also made. 
 
 
1. INTRODUCTION 

Over sixty years have passed since Hevesy and Levi first utilized a neutron source to analyze 
dysprosium in Y2O3 by NAA in 1936. No doubt, the NAA has played a very important role in 
science and technology, especially at its early development stage as a unique analytical 
arsenal characteristic of nuclear properties. Its extremely high sensitivity for most elements in 
the periodical table, good accuracy and precision, non-destructiveness, less matrix effect and 
multi-elemental analysis ability, etc. are so fascinating that the NAA has become an 
authorized method in the trace elemental analysis, even the sole selection in some cases, e.g. 
activable stable isotope tracing, in vivo analysis, fine solid particle (cosmic dust and 
atmospheric aerosol) analysis, etc. However, with the development of other non-nuclear 
analysis methods in recent years, e.g. Inductively-Coupled Plasma-Atomic Emission 
Spectroscopy (ICP-AES), Inductively-Coupled Plasma-Mass Spectroscopy (ICP-MS), Laser 
Photoionization Spectroscopy (LAPIS), the NAA seems to lose the past eminence. Naturally, 
a question arises: Is Activation Analysis Still Active? 

2. INSTRUMENTAL NEUTRON ACTIVATION ANALYSIS (INAA) 

With the advent of high purity Ge detector, the INAA has become a main member in the 
nuclear analysis field. Due to its simplicity and good accuracy it has been accepted as a 
recommended method in certifying the reference materials and applied in multidisciplinary 
studies, from extraterrestrial matter to deep-sea sediment, from large archaeological relics to 
very fine atmospheric particles, etc. However, some major obstacles which hinder its 
development as follows: 

�� sophisticated hardware. Most reactors used for INAA in the world are so huge and 
expensive that it is very difficult to access for non-nuclear scientists;  

�� radiation damage and radioactive waste;  
�� time-consuming and relatively expensive.  

 
To overcome the first obstruction, a compact reactor, like the Canadian SLOWPOKE or 
Chinese Miniature Neutron Source Reactor (MNSR), should be exploited. In fact, they can be 
more or less regarded as a neutron source, instead of a true reactor, which are so safe that they 
are permitted to be installed at hospitals, universities, even in the downtown area.  

To solve the second and third problems, the INAA based on short-lived radioactive nuclides 
should be thoroughly studied. As an alternative, it can be combined with simple 
preconcentration procedure to improve its sensitivity and selectivity. Consequently, the INAA 
is still a unique analytical tool in the fields of major, minor, trace and ultratrace elements. 
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3. K0 METHOD 

In the past twenty years a number of NAA groups, mostly in Europe, are involved in 
establishing this method, which is regarded to hold the following merits:  

�� the troublesome preparation of chemical standards can be avoided;  
�� the radioactivity counting time for standards can be saved;  
�� quantitative results for elements, but absent in chemical standards, can be obtained; 
�� some nuclear parameters, e.g. the cross section of neutron capture reaction and the 

branching ratio of the gamma-ray emitted by the radioactive nuclide, can be re-
evaluated.  

 
In fact the main purpose of this method is to simplify the routine NAA, which benefits the 
extension of utilization of NAA in non-nuclear fields. 

4. PROMPT GAMMA NEUTRON ACTIVATION ANALYSIS (PGNAA) 

Although its poor sensitivity for most elements, high radioactive background and complicated 
gamma spectrum, the PGNAA is developing rapidly due to the improvement of the facility, 
use of cold neutron and alleviation of background level, which has made it as a unique 
supplement to the conventional NAA, especially for analysis of H, B, Cd, Sm and some 
others. 

It is worthwhile to mention the related work performed in Japan, USA, Germany, Canada and 
other countries. The very fascinating feature of PGNAA is to be able to non-destructively 
analyze large samples, and this method will find a broad application in archaeology. Another 
potential application field of PGNAA will be in radiotherapy via a boron-containing complex 
selectively absorbed by cancer tissue.  

5. RADIOCHEMICAL NEUTRON ACTIVATION ANALYSIS (RNAA) 

The use of RNAA is unlikely to expand significantly in near future, but will remain in 
specialized areas, e.g. determination of platinum group elements (PGEs) and biologically 
essential trace elements at low level. Up to now the RNAA is still the only way to be able to 
analyze all 6 PGEs in various matrices, although the ICP-MS and NTIMS (Negatively 
Thermolized Ionization Mass Spectroscopy are constituting a true threat to RNAA. 

The role of RNAA in the analysis of REEs is fading, but it is still superior to other techniques 
for small sample analysis. The determinations of some essential trace elements, e.g. Cr, I, V, 
Mn, Co, etc. highly rely on RNAA, especially at ultratrace level, e.g. serum and sub-cell 
fractions. 

6. MOLECULAR ACTIVATION ANALYSIS (MAA) 

The term of MAA refers to an activation method that is able to give information about the 
chemical species of trace elements in systems of interest, though its definition has remained to 
be assigned. Its development is strongly stimulated by the urgent need to know the chemical 
species of elements. Total concentrations are often without any meaning when assessing 
health or environmental risks or in the explanation of geochemical processes. Recently the 
study of chemical species is implicitly increasing.  
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The critical point in the MAA is that it is not permitted to change the original chemical 
species of elements in systems, or the change has to be under control; in the meantime not 
allowed to form the “new artefact” originally not present in systems.  

Some latest practical examples of the MAA are in the studies of the essential elements (Cr, 
Fe, Co, Se, I), toxic elements (Hg, As) and unknown elements (REEs, PGEs) in life science. 

The important biological effects of chemical species of essential and toxic elements in 
environmental and biological systems have given a strong impetus to develop the MAA and 
will further enhance its necessity, and for the foreseeable future it is difficult to imagine how 
such studies can be pursued without a heavy reliance on the MAA.  

Although there are some similarities between the MAA and preconcentrating NAA, the 
ultimate purpose is quite different. The MAA is aimed at chemical speciation of trace 
elements in samples of interest, whereas the latter is only to overcome matrix interference or 
to enhance the analytical sensitivity. 

7. COMPARISON OF NAA WITH OTHER ANALYTICAL TECHNIQUES 

Comparing analytical methods for trace elements is always very difficult. In fact, each coin 
has two sides and every method has its own merits and drawbacks. One has to take account of 
the following factors while doing this comparison:  

�� sample matrix;  
�� sensitivity and accuracy; 
�� contamination danger and blank correction;  
�� available sample amount;  
�� speed and cost; 
�� multi-elemental analysis ability;  
�� possibility of chemical species study, etc. 

 
Another important factor in the selection of analytical methods is the personnel expertise. 
Some practical examples for this comparison will be given in this paper, especially in the 
analysis of platinum group elements, rare earth elements and other interesting elements.  

Anyhow, the NAA is a valuable technique due to its nuclear-oriented character, unlike other 
techniques based on the atomic behaviors. Thus, as an independent arsenal, it will continue to 
occupy a reasonable position in the analytical kingdom. As a conclusion, what we can say is 
that activation analysis will still be active , even though it is not like before. 
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Abstract. The Molecular Activation Analysis (MAA) mainly refers to an activation analysis method that is able 
to provide information about the chemical species of elements in systems of interest, though its exact definition 
has remained to be assigned. Its development is strongly stimulated by the urgent need to know the chemical 
species of elements, because the bulk contents or concentrations are often insignificant for judging biological, 
environmental or geochemical effects of elements. In this paper, the features, methodology and limitation of 
MAA were outlined. Further, the up-to-date MAA progress made in our laboratory was introduced as well. 
 
 
1. INTRODUCTION 

The study of trace elements in biology, environment and geology has roughly experienced 
two stages: (1) on existence and bulk composition of trace elements in sample of interest; and 
(2) on correlation between total contents or concentrations of one element and another, and 
corresponding synergetic or antagonic effect. During these two development stages the 
Neutron Activation Analysis (NAA) and other nuclear analysis methods, e.g. PIXE, have 
made a major contribution. However, with development of trace element research, more and 
more emphasis is being oriented to their chemical species, rather than the bulk analysis, which 
is meaningless in many cases when assessing biological, environmental or geochemical 
effects of elements [1]. A literature survey clearly demonstrated an implicitly increasing 
tendency for speciation study of elements [2], from a few papers in this field in early seventies 
to hundreds nowadays annually. In literature one can quite often find two terms: species and 
speciation. Both are arbitrarily used without any difference. Strictly speaking, the “species” 
means a chemical form, state or valence of an element in a medium, e.g. Cr3+,CrO4

2-, Cr2O7
2- 

or low molecular weight chromium compound, etc. refer to the possible species of chromium 
element, whereas the “speciation” means an action resulting in transformation, alteration or 
variation from one species to another. Of course, more discussion on their definitions is 
desirable. 

In order to meet this challenge in species analysis of trace elements, a number of nuclear and 
non-nuclear techniques were established, in which the so-called MAA can play a unique role 
in the species analysis (e.g. [3–10]). The term of MAA refers to an activation analysis method 
that is able to provide information about the chemical species of elements in system of 
interest, though its definition remains to be assigned. Since the MAA was first proposed in 
1986, it has become one of the main techniques for species analysis. In this paper its features, 
methodology and limitation will be outlined. In the meantime, some practical MAA examples 
recently performed in our laboratory will be presented as well. 

2. FEATURES OF MAA 

In general, the MAA inherits the merits of conventional NAA, e.g. high sensitivity, good 
accuracy and precision, small sampling amount and multi-elemental analysis ability, etc. 
During analytical process, it is easier for MAA to keep the original chemical species of 
elements unchanged than for other non-nuclear methods. In some cases the MAA is even a 
sole choice to do speciation analysis. 
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However, the critical point of the MAA is that it is not permitted to alter the original chemical 
species of elements existing in system of interest, or the alteration must be under strict control 
and is able to be traced; in the meantime not allowed to form the “new artefact” originally not 
present in system.  

3. METHODOLOGY OF MAA 

The methodology of MAA, in fact, is a combination of conventional nuclear analysis methods 
with physical, chemical or biological separation procedures. For example, in order to study 
the chemical species of trace elements in biological samples, e.g. distribution patterns of trace 
elements in cell and subcellular fractions, and their combination with biological 
macromolecules (protein, enzyme or nuclear acid, etc.), the first step is to selectively separate 
various species fractions, followed by identification and determination. For this purpose the 
physical or chemical characteristics of biological macromolecules, e.g. size, charge, 
solubility, mobility or specificity of biological functions are often utilized. The chemical 
stepwise dissolution, phase separation, ion exchange chromatography, coprecipitation, 
ultracentrifugation, gel chromatography, PAGE gel electrophoresis, etc. are of common 
practice combined with NAA. Besides, the PIXE is also a valuable nuclear analysis technique 
for chemical species research, which possesses the unique scanning characteristics providing 
a two-dimensional distribution information of element species [11, 12]. 

Another important factor which has to be taken account is the quality assurance for chemical 
species analysis. Unfortunately, only a few reference materials for species analysis are 
available [13, 14]. The preparation and certification of more species reference materials are 
desirable. 

4. PRACTICAL APPLICATION OF MAA 

Since 1986 the MAA has been widely used in environmental and biological fields to study the 
chemical species of trace elements in various samples, e.g. tissue, hair, urine, blood, sediment 
and water [2–10] and rarely in geology [15]. The recent progress made in our laboratory in 
this field is briefly introduced as follows: 

4.1. MAA for iridium in Cretaceous and Tertiary boundary clay 

Iridium, one of 6 platinum group elements, is often used as an extraterrestrial indicator in 
geochemistry and cosmochemistry [16]. Further, the chemical species of Ir is associated with 
its origin. According to the known chemical behaviors of Ir 5 possible iridium species in 
nature are available, i.e. (1) soluble complex ion; (2) sulfide; (3) metallic phase; (4) noble 
nugget; (5) organic complex. Thus, we attempted to reveal the origin of anomalous Ir at the 
Cretaceous and Tertiary (K-T) boundary samples via its chemical species analysis by a newly-
developed MAA procedure based on a chemical stepwise dissolution and radiochemical and 
instrumental NAA [15]. Figure 1 shows the distribution patterns of Ir at 4 K-T boundary 
samples. It is clear from Fig. 1 that the residue phase is the main host phase of Ir for all K-T 
boundaries, no matter what they are marine or continent sediment. Our MAA results provide 
more evidence to favor the extraterrestrial origin of anomalous Ir at K-T, although the 
volcanic activity and geochemical processes also play more or less role in the Ir enrichment.  
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FIG.1. Distribution patterns of Ir in K-T boundary samples. 
 
4.2. MAA for I in algae and human liver 
 
Up to now, the study on chemical species of iodine in marine algae is scarce and some 
available data are controversial [17, 18]. Taking into account of the fact that algae are 
becoming a well-received green food and a main source of dietary iodine for Chinese people, 
of whom 40% live in the I-deficient area, we studied the chemical species of I in 7 marine 
algae Codium fragile, Ulva pertuse, Monostroma nitidum, Gracilaria confervoides, 
Sargassum kjellmanianum, Dictyopteris divaricata and Laminaria japonica by a newly-
established MAA procedure based on leaching, precipitation and NAA. The experimental 
results for the I species in 7 algae indicate that the contents of total iodine and various species 
of iodine are different in different alga specimen. 99% of total iodine are soluble in Laminaria 
japonica, whereas in other algae, the soluble iodine contents range from 16 to 41%. In 
leachates of marine algae, 61 to 93% of soluble iodine exist as I- with less than 5% IO3

-
 and 5 

to 37% organic iodine [19, 20]. 

Besides the thyroid, the human liver is also an important target organ for iodine accumulation. 
At the moment we are studying the chemical species of iodine in human liver. The 
preliminary results are listed in Table 1. 

4.3. MAA for Hg in human hair 
 
It is known that the methylmercury (Me-Hg) has a strongly toxic effect on human embryo, 
which is evidently different both qualitatively and quantitatively from that on adult. This 
hazard can be seen during the prenatal and postnatal stages. In order to study the transfer 
mechanism of mercury, mainly Me-Hg, from pregnant women to their new-born infants, we 
developed two simple MAA procedures to determine the longitudinal variation of total, 
inorganic and organic mercury contents in their hair sample [21, 22]. One is based on the 
 

25 

  metal  sulfide carbonate oxide  silicate  residue 
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Table 1. Distribution of iodine in the subcellular fraction of human liver (A = percentage of 
iodine content of pre- over post-permeation; B = percentage of iodine content of subcellular 
fraction in whole liver) 

 
Subcellular iodine �g/g (d.w.)  A  B 

fraction pre-permeation post-permeation ?%? ?%? 
 whole sample protein whole sample protein   

liver 0.321 4.472 0.531 2.917 78.3  
nuclei 0.932 6.413 1.194 5.346 12.4 48.0 

mitochondria 0.825 7.015 0.891 5.412 22.1 15.7 
lysosome 0.681 9.238 0.900 8.746 80.7 10.6 

microsome 0.171 1.471     1.0 
cytrose 0.135 1.120    17.7 

 
 
selective extraction of methylmercury from hair by hydrochloric acid (see Fig. 2) and other is 
to take advantage of the volatility of methylmercury cyanide. The hair sample is mixed with 
potassium hexacyanoferrate and sulfuric acid. Then the resulting methylmercury cyanide is 
absorbed by cysteine paper, which is irradiated in reactor and directly counted. The 
interlaboratory comparison demonstrates that their accuracy, precision and reproducibility are 
satisfactory. 

4.4. MAA for rare earth elements (REEs) in fern 
 
The fact that REEs are being widely used in China and other countries to modern industry and 
agriculture, is resulting in the higher level of REEs in environment. However, until now little 
work on their chemical species in natural plant has been reported. The information about 
whether there is REE-bound macromolecules in natural plant specimen is not available. Thus, 
we established a new MAA procedure based on pH variation , out salting, ultracentrifugation, 
gel filtration chromatography and electrophoresis, etc. and INAA, to study the REE-bound 
proteins in a natural plant fern, Dicranopteris dichotoma. Our results (Fig. 3) identified two 
new REE-bound proteins (RBP-1 and RBP-2) in this species of fern. The molecular weights 
(MW) of RBP-a and RBP-2 on Sephadex G-200 are about 8 × 105 and less than 1.24 × 104, 
respectively. Their SDS-PAGE graphs show that both contain two protein subunits with MW 
14100 and 38700, that seem to be conjugated proteins, glycoproteins with different glyco-
units [23, 24]. 

4.5. MAA for Se in human liver 
 
Because of essentiality of selenium to human-being, its biological effect and chemical species 
have been substantially studied. However, the report on its distribution and behavior in human 
liver is still scarce. For this reason we recently used MAA to study the subcellular location of 
Se and cytosolic distribution of Se contained in human liver. Our results indicated that almost 
half of Se existed in the nuclei fraction, followed by cytosol and mitochondria. A very few 
percentages of Se were present in lyzosome and microsome. Further Sephadex G200 gel 
chromatographic experiment found 4 Se-containing components with MW 335+20, 70+5, 
45+1.5 and 14+3 kD in the soluble fractions of human liver (see Fig. 4). The most abundant 
Se-containing component, peak II, accounted for 70% of the total cytosolic Se. The peak II 
was subjected to be further purified via DEAE Sepharose fast flow ion exchange 
chromatography with a linear gradient of 10 to 500 mmol/L (NH4)2CO3 buffer. It is clear that 
the peak II consists of 4 Se-containing proteins. The identification of these Se-containing 
proteins in human liver is in progress [25]. 
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FIG. 3. Two new REE-bound proteins found in a species of fern  by a combination of NAA and UV 
absorption spectrometry. 
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FIG.2. Flow chart of isolation of inorganic and organic Hg from the hair sample by HCl (T-Hg, I-Hg 
and O-Hg mean total, inorganic and organic mercury, respectively). 
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 FIG. 4     Profiles of selenium content and protein of human liver cytosol 
on Sephadex G-200 gel chromatography
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The above-mentioned examples have clearly demonstrated that the important biological 
effects of chemical species of essential and toxic elements in environmental and biological 
systems and geochemical explanation of indicative elements have given a strong impetus to 
develop the MAA and will further stimulate its necessity, and for the foreseeable future it is 
hard to imagine how such studies can be pursued without a heave reliance on the molecular 
activation analysis. The new application topics will need to improve the available 
methodology of MAA and more new MAA procedures will come out under this impact. 
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Abstract. NAA is very useful for the determination of trace and minor elements in many environmental 
applications. While instrumental NAA (INAA) has a number of valid applications in this field, radiochemical 
NAA (RNAA) prior to, or post irradiation provides some significant advantages. One of the major focus points 
for environmental applications of NAA is to assess the magnitude of various pollutants. This paper discusses 
doing this via two methods, namely air monitoring and biological monitoring. 
 
 

1. INTRODUCTION 
 
In the last three decades, neutron activation analysis (NAA), namely its non-destructive mode 
(instrumental neutron activation analysis – INAA), has been found to be extremely useful in 
the determination of trace and minor elements in many environmental applications. The 
advantageous features of the method have been summarized in Chapter 1 of this publication. 

Although it is mostly possible to determine a great number of elements in a variety of 
environmental matrices by INAA, some essential or toxic elements can only be determined on 
condition that the bulk of matrix activity is eliminated or the respective radionuclides are 
isolated by chemical separation. The most convenient way is to perform totally post-
irradiation separation (radiochemical NAA – RNAA), because this mode retains one the most 
important advantages of NAA — the virtual absence of the analytical blank. Another possible 
way to eliminating matrix or interference activities which is quite powerful for certain 
elements consists in selective activation and measurement procedures as discussed in Chapter 
3 of this publication. 

However, the increasing availability of clean laboratories (Class 10 or 100) and quality of 
chemicals, which are the prerequisites for preventing sample contamination prior to 
irradiation, makes removal of matrix and/or interfering activity by pre-irradiation separation a 
good alternative for determination of selected elements, especially for those forming short-
lived radionuclides. Moreover, this way of separation is becoming increasingly important for 
chemical speciation analysis. Methods of NAA aimed at providing information on chemical 
species of elements in a system of interest are sometimes termed molecular NAA-MAA. 

The importance of employing NAA in environmental applications will be demonstrated using 
examples of air pollution monitoring and biological monitoring of environmental pollution. 

2. AIR POLLUTION STUDIES 

Large amounts of pollutants are yearly discharged into various compartments of the 
environment worldwide, although many countries have already establishing measures towards 
decreasing pollution of the environment. Many pollutants enter primarily the atmosphere in 
the form of inorganic or organic gases and inorganic or organic particulates. The major 
sources of atmospheric pollution are generally recognized to be industry, power generation 
and home-heating, transport, and waste incineration. The material discharged into the 
atmosphere is dispersed in aerosols, tiny liquid or solid particles. The processes involved in 
the formation of the atmospheric aerosol are schematically depicted in Fig. 1 [1]. The solid 
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FIG.1. Processes involved in the atmospheric aerosol formation and resulting particle size 
distribution [1]. 
 
 

component of this aerosol, which has diameters in the range from about 1 nm to “giant” 
particles of several hundred �m, is frequently referred to as airborne particles or air 
particulate matter (APM). However, most of their mass is in the size range from about 0.1 �m 
to 10 �m. Depending on the particle size and the atmospheric conditions, APM resides in the 
air for various periods of time, typically from a few days to a few weeks, and can be 
transported by the winds over distances of thousands of kilometres. Eventually, APM is 
removed by precipitation in rainfall or by gravitational fallout. Therefore, there is a continual 
transfer of contaminants from the atmosphere into the hydrosphere or into the soil, so that the 
air provides a route for the contamination of the rest of the biosphere. 

Because of the variability in production and the relatively short lifetime, the concentrations, 
size distributions and chemical composition of APM vary widely in time and space. Although 
aerosols form only a small part of the total mass of the atmosphere (about 1 part in 109), they 
play an important role in atmospheric chemistry, have effects on human and animal health and 
welfare, and they influence climate [2]. The climatic effect of aerosols is in the direction of 
cooling (under most circumstances) and is of a magnitude comparable to that of the 
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greenhouse gas warming [3]. However, there is still a large uncertainty associated with the 
aerosol forcing estimate which reflects the unsatisfactory knowledge regarding the sources, 
distributions, and properties of atmospheric aerosols. 

APM larger than 1 �m show a high sedimentation velocity and can move independently of the 
wind, while APM smaller than 1 �m show a low sedimentation velocity and move with the 
wind. It is probable, therefore, that APM smaller than 1 �m exert a strong influence on human 
health and the environment [4]. The potential negative effects of aerosols on human health 
have been recognized many years ago. Recently, renewed interest in the health risks of 
aerosols has been generated by the finding of a correlation between the increased mortality 
and the concentration of airborne particles in metropolitan areas in the United States [5]. The 
US studies, together with similar research in the European Union, Brazil and elsewhere, 
consistently link higher levels of APM to increased risks of respiratory-, cardiovascular-, and 
cancer-related mortality, as well as pneumonia, lung functions loss, hospital admissions, 
asthma, and other respiratory problems. In most studies, the correlations examined were those 
between mortality and PM 10 particles (smaller than 10 �m equivalent aerodynamic diameter 
- EAD), but other studies indicated that the association with increased mortality was even 
higher when PM 2.5 particles were examined instead of those with PM 10. This is probably 
due to the relationship between the diameter of the APM and its precipitation in the human 
lungs. The respiratory air passages begin at the nasal cavity, pass through the trachea, bronchi 
and bronchioles, and end at the alveoli. The diameter of these passages and the velocity of air 
flow through them also decrease in this order. Larger APM are therefore unable to penetrate 
into the narrow branches of passages, but smaller particulates can easily reach the alveoli (Cf. 
Fig. 2). Clearly, therefore, it is important to investigate the size distribution of APM in 
addition to simple quantitative observations on their total mass. For these purposes, various 
sampling techniques of APM exist which has already been reviewed [4, 6]. Details of INAA 
methodology and a survey of reference materials available for quality assurance of air 
pollution studies have also been described [6]. 

2.1. Data reporting and treatment 

Results for the element concentrations in APM are usually expressed in a mass of an element 
per cubic meter of air, i.e. in ng m-3, �g m-3, etc. Therefore, it should be emphasised that at 
least the same attention should be given to the appropriateness and quality assurance of 
sampling of APM, i.e. calibration and control of the air flow through a collection device, 
checking of tightness of the device to avoid possible leakages, etc., as to its analysis, because 
otherwise larger uncertainties of results may be expected due to the sampling process than 
those of analysis. In addition, the concentration of an element in APM can be calculated as a 
mass fraction. However, in this case the exact mass of the material collected must be known. 
This means that proper weighing procedures must be followed [6]. 

A first exploratory step in the interpretation of the element concentrations determined is to 
compare the level of pollution in the impact (polluted) and clean (background) regions, and to 
evaluate time trends, especially if sampling was performed in regular intervals for a sufficient 
period of time. More broadly, this type of the data treatment concerns evaluation of spatial 
and seasonal variability of elemental composition of APM. 

A useful way of the data evaluation is the use of enrichment factor (EF) calculations. An EF is 
defined as the double ratio of the concentration of the element of interest, cx, in APM to that 
of a reference element, cr, in APM divided by the ratio of the same elements in a reference 
material (e.g. the earth crust, soil, sea water, etc.) according to the relation: 
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FIG. 2. The human respiratory system and its various cutoff points. 
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In general, for EF calculations in APM, aluminium or scandium is taken is taken as the 
reference element both in APM and the reference material for which the earth crust is most 
frequently employed. Evaluating of EF presumes that the atmosphere is always loaded with 
APM originating both from the natural (soil erosion, sea aerosol) and anthropogenic (man-
made) sources. An EF value close to one is indicative that the main source is of the crustal 
and/or marine origin, while values of EF exceeding ten (sometimes these values can reach 
several thousands) are indicative of significant anthropogenic contribution. 

In order to develop rational and effective strategies for improving air quality, it is necessary to 
have an understanding of the relationship between the pollutant sources and their impact at 
receptor sites. Qualitative information of this kind can be inferred from the increased 
occurrence of specific elements which serve as markers for particular source emissions. 
Examples of marker elements are given in Table 1 [6]. 
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Table 1. Characterization of emission sources according to marker elements [6] 
 

Source Elements 
Coal-fired plants As, Se, S 
Oil-fired plants V, Ni, rare earths 
Motor vehicles Br, Pb 
Refuse incineration Ag, Zn, Sb, Cd, Sn, Pb 
Limestone/concrete Ca, Mg 
Soil Al, Fe, Mn, Sc, Si, Ti 
Wood burning C (elemental and volatile), K 
Refineries Rare earths 
Sulphide smelters In, Cd, As, Se, S 
 
 
More sophisticated approaches involve source or dispersion models which predict the 
concentration of pollutants at a receptor site using diffusion models with emission inventories 
and meteorological data. The predicted element concentrations can then be compared with the 
measured ones. 

There is a number of mutlivariate statistical techniques which can be used for these purposes. 
Receptor modelling infer source contributions at receptor sites using statistical models with 
the data measured at the receptor site. Principal component analysis (PCA) is frequently 
employed for identifying pollutant sources. PCA attempts to explain the variance of a large 
set of intercorrelated variables (measured element concentrations in APM) with a smaller set 
of independent variables (the principal components). PCA is one of method of qualitative and 
quantitative techniques for data analysis which are collectively termed factor analysis. An 
introduction to data analysis of airborne particle composition has recently been published 
within the framework of one the IAEA Research Co-ordinated Programmes in this field [7] 
and there are numerous literature sources on this topic, as well, for instance [8,9]. Moreover 
new techniques are being developed, such as APCA, ”Source profiles by unique ratios 
technique” (SPUR), ”Positive matrix factorization” (PFA) [10, 11]. Chemical mass balance 
(CMB) methods are designed to apportion the APM mass of each sample quantitatively 
amongst a number of contributing sources. This is possible if each source is characterized by 
a specific chemical pattern (source profile) and as many variables are available as sources. 

3. BIOLOGICAL MONITORING OF ENVIRONMENTAL POLLUTION 

Biomonitoring, i.e. the use of biological indicators to detect changes in the physical and 
chemical properties of the abiotic environment, represents an interesting alternative to direct 
measurements of the physical and chemical properties of the environment. Biological 
indicators are those tissues, organisms or populations of which their occurrence, vitality and 
responses change under the impact of environmental conditions [12]. Biomonitoring takes one 
of two approaches: i) direct monitoring which is based on measuring the quantity of pollutants 
in suitable organisms rather than in samples from the environment; ii) indirect monitoring 
which is based on interpreting of biological signals due to changes of the environment such as 
the study of morphological, physiological and cytological responses of organisms, changes of 
abundances of certain species, etc. Only the former approach will be treated in this work. 

Although data provided by physical and chemical monitoring are indispensable for evaluating 
the changes of the environment, application of an (ideal) biomonitor can show several 
advantages compared to the use of direct monitoring techniques: 
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�� the concentration of pollutants in the monitor tissue or organism are often higher than in 
the system to be monitored. This may facilitate accurate sampling and analysis, which 
are very difficult at the low levels occurring in many compartments of the environment; 

�� sampling of the tissue or organism used as a biological monitor is in general easier than 
most direct sampling procedures and no long term use of expensive sampling equipment 
is required; 

�� the intricated equilibria existing in many parts of the environment can easily be 
distorted by sampling itself, which may lead to erroneous results. When using biological 
monitors, this distortion is minimized; 

�� most tissues and organisms reflect external conditions averaged over a certain time, 
depending on e.g. the biological half-life of a specific substance in that organism. This 
is important when monitoring levels may change rapidly in time; 

�� concentrations of pollutants in organisms may give insight into the bio-availability of 
that pollutant. This information may be as relevant as the absolute concentration in a 
certain part of the environment; 

�� biological monitors are already present in the environment and monitoring 
continuously. 

 
In direct biomonitoring of atmospheric element pollution, the relevant information is deduced 
from concentrations of elements in the monitor tissues. They have to meet specific 
requirements which are as follows: 

�� abundant occurrence in the area of interest, independent of local conditions; 
�� available for sampling in all seasons; 
�� tolerant to pollutants at relevant levels; 
�� response to quantity to be monitored known and understood; 
�� element uptake independent of local conditions other than the levels of elements to be 

monitored; 
�� element uptake not influenced by regulating biological mechanism or synergistic 

effects; 
�� averaging over suitable time period; 
�� absence of appreciable element uptake from sources other than atmospheric; 
�� low background concentrations; 
�� easy sampling and sampling preparation; 
�� element accumulation to concentration levels accessible by routine analytical 

techniques. 
 
Many human, animal and plant species can be used for air pollution monitoring, because they 
can meet most of the above requirements. Human and animal species and/or tissues usually 
reflect complex changes of the environment, i.e. air, water, soil pollution, and element intake 
from their diet, so that their use for studying only air pollution may be rather difficult to 
interpret. Nevertheless, some of them proved to be very useful, such as analysis of human 
and/or animal hair and other ectoderm derivatives, for instance nails. Certain plant species 
appear to be especially suitable to indicate elemental air pollution and therefore advantages 
and pitfalls of their possible use as biomonitors for air pollution studies will also be briefly 
discussed. 

3.1. Hair 
 
The feasibility of human hair as a material easily accessible for non-invasive sampling in 
individuals or population groups, to demonstrate criminal, occupational or environmental 
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exposure to toxic elements has received a great deal of attention in the literature. Besides 
many papers scattered in various journals, two monographs and two review articles have been 
published [13–17]. Hair analysis is also facilitated by the availability of the generally 
recognized washing procedure which has been suggested in one of the IAEA Research Co-
ordinated Programmes in the mid- seventies [18]. It this is very important to use a 
standardized hair cleaning, because there is no single washing procedure which would 
completely remove the external contamination without influencing the endogenous element 
contents. While a generally accepted washing procedure exists for hair (for monitoring of 
environmental pollution) and thus comparable data on elemental hair composition are 
available from many countries, no such standardized washing is widely used for nail cleaning 
which can also be used for biological monitoring as another ectoderm derivative. 

Numerous examples of application of hair analysis for studying environmental pollution can 
be found in the above (and other) literature sources. Therefore, the usefulness of hair analysis 
for these purposes will only be shown in one example which demonstrates a correlation 
between arsenic content in hair of children living in various distances from a pollution source 
and the expected degree of arsenic contamination of the air (Cf. Fig. 3 [19]). Noteworthy, a 
similar correlation was obtained when urinary arsenic levels of children were determined (Cf. 
Fig. 4 [19]). This demonstrates that urine is also a very suitable indicator to assess 
environmental exposure, however, the arsenic (and many other elements) determination in 
urine is much difficult compared to hair, because RNAA is required for this purpose to 
eliminate high matrix activity.  

Similarly to human hair, the hair of some rodents, such as the Common Hare (Lepus 
europaeus) and the Common Vole (Microtus arvalis) proved to be a very useful indicator of 
environmental pollution. This can be supported by the finding that similar heamatological 
changes were found in hares as in children living in regions burdened with industrial 
emissions [20]. 

3.2. Other biomonitors 
 
Recently, a review has been published by the present author [21] on using herbaceous plants, 
trees, bryophytes, and lichens for biomonitoring of air pollution. Of the various herbaceous 
plants, a positive correlation has been found between the chemical composition of the leaves 
of Taraxanum officiale and the local impact of air pollution for a number of elements. Other 
plants have been recognized especially suitable to indicate loading with selected elements.  

There are two broad-leaved trees which seem to have found the widest application as 
indicators of air pollution, mostly because of their resistance to pollutants and wide 
distribution in Europe and almost throughout the world: Populus nigra ssp. italica (Italian 
poplar) and Robinia pseudoacacia (the black locust tree). Coniferous trees are more sensitive 
indicators of air pollution than the deciduous trees, because they are exposed to air pollution 
over a longer period of time than leaves due to a longer life span of needles (3-4 years). Thus, 
most of the coniferous trees can respond to low pollutant concentrations. Taxus baccata, 
Picea abies, Pinus silvestris and Pseudotsuga menziesii are most frequently used indicators of 
elemental air pollution. Similarly as with leaves, the chemical composition of needles of 
coniferous trees is influenced by two factors: i) by their nutritional status, i.e. by uptake of 
nutrients and/or pollutants by roots from soil; ii) by retention of air pollutants on the needle 
surface. In the case of spruce needles, aerosol retention is facilitated by the very rugged 
structure of epicuticular wax. Tree bark is also exposed to long-term air pollution and it 
accumulates certain elements and sulphur dioxide. 
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FIG. 3. Arsenic concentrations (mg/kg, mean � s.d.) in the hair of 10-year boys residing adifferent 
distances from a coal fired power plant (0–emission source, �–distance in the direction of prevailing 
winds, � – distance against the direction of prevailing winds) [19]. 

 

 

FIG. 4. Arsenic concentrations in the urine (� – mean � s.d.) and hair (� – mean � s.d.) of 10– year 
boys residing in different distances from an emission source (symbols as in Fig. 3) [19]. 
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Bryophytes are especially suitable for biological monitoring of air pollution due to several 
specific features. They are evergreen and (with a few exceptions) perennial plants, so that 
they can be utilized throughout the year. Most bryophytes species do not posses a cuticle and, 
therefore, can take up water over the entire plant surface. As a consequence, they obtain their 
nutrients directly from atmospheric deposition, i.e. dustfall and precipitation. Especially 
useful are some moss species that have a layered habit and produce distinct annual segments. 
The most frequently used moss species are Hylocomium splendens and Pleurozium schreberi 
which have the ability to accumulate many metals in extremely high concentrations. The 
usefulness of the use of the feather moss Hylocomium splendens to study the geographical 
deposition and time-trend pattern was demonstrated by Steinnes (Cf. Fig. 5) [22]. 

Lichens are specialized organisms in which a fungus and an alga form a nutritional and 
physiological unit. The autotrophic alga supplies nutrients for both itself and the heterotrophic 
fungus. Lichens react to the pollutant emissions. Their high sensitivity to various air 
pollutants: 

�� in comparison with higher plants — can be ascribed to both morphological and 
physiological differences which namely include: 

�� in the absence of a cuticle, pollutants find an easier way into the thallus; 
�� corticolous lichens absorb both water and nutrients directly from the air; 
�� lichens accumulate various materials without selection; 
�� the material once absorbed will accumulate since there is no excretion. 
 

About seventy lichen species have been reported as suitable indicators of elemental pollution. 
Of these, Hypogymnia physodes (L.) Nyl. and Parmelia sulcata are the most frequently used 
species for biomonitoring in Europe. The former species is widespread in Northern Europe 
and in mountain regions. It has many advantages which are important for application as a 
biomonitoring organism, compared to other lichen species [21]. A certain problem of utilizing 
lichens (and also tree bark) for monitoring air pollution may be due to stem flow which may 
bring to these indicators additional nutrients and/or pollutants not necessarily associated with 
air pollution. 

The use of biological indicators for air pollution monitoring was introduced about 30 years 
ago. Since then, a variety of organisms has been proposed for biomonitoring purposes. 
Importance of particular biomonitors can be inferred from frequency of their use in various 
national and international programmes. For instance, the following biomonitors of air 
pollution are being collected for the German Environmental Specimen Bank: grass, poplar 
and beech leaves, spruce and pine shoots [23]. Grasses and other herbaceous plants may be 
useful indicators, especially if they are grown on standard soil in exposure containers (pots) 
[24]. Mosses have been very popular in both local and long-term, large-scale studies in 
Nordic countries since seventies [22, 26] and using these bioindicators have also been 
included in the LRTAP programme [27]. In the Netherlands, national trace-element air 
pollution monitoring survey using epiphytic lichens has been started in 1982 [28–30] and 
continues on international scale until now. The element gradients obtained from the lichen 
data set (1982–1983) agreed with the calculated atmospheric element gradients (1983) as is 
illustrated for arsenic in Fig. 6 [31]. Lichen analysis followed by a specific multivariate 
statistical procedure known as "Target Transformation Factor Analysis" has successfully been 
employed in the Dutch studies for apportionment of emission sources inside and outside the 
country [28–30]. To obtain the relevant information of this kind, multi-element analysis is 
required. For this purpose, nuclear analytical methods, namely instrumental neutron activation 
analysis, proved to be very effective tools. 
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FIGs 6. A, B. Arsenic concentrations in Parmelia sulcata (mg/kg) (A=1982–1983; B=1986–1987). 
The geographical concentration patterns contain five element concentration classes. Elemental 
concentration Class 1 (unshaded) ranges from the minimum concentrations determined to Class 2 
(shaded with plus signs). Consequently, Class 5 (darkest shading) ranges up to the maximum 
concentrations determined. Classes 1-5 for 1982-1983 (values for 1986–1987 in brackets): 1.7 (0.5), 
4.0, 6.0, 8.0, 16.6 (17.0). 

 
FIGs 6. C, D. Calculated 1983 atmospheric concentrations (ng/m3) for arsenic (C) and calculated 
1983 total (wet and dry) deposition of arsenic (nmol/ha/y) (D) [31]. 
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Table 2. Detection limits of 45 elements in selected environmental matrices by INAA* 

Element Coal Coal fly ash Atmospheric Soil, Spruce
  particulate sediment needles
 mg/kg mg/kg matter, ng m-3 mg/kg mg/kg 

Ag 0.5 1.5 0.04 0.7 0.05
Al 20 35 5 30 15 
As 0.05 0.25 0.015 0.45 0.05 
Au 0.001 0.01 0.005 0.01 0.001 
Ba 20 100 3 50 3 
Br 0.05 0.3 0.1 0.4 0.04 
Ca 100 500 30 500 300 
Cd 0.5 4 0.1 5 0.3 
Ce 0.15 1.5 0.15 1 0.2 
Cl 50 300 15 400 50 
Co 0.015 0.1 0.03 0.05 0.01 
Cr 0.5 3.5 1 1.5 0.2 
Cs 0.05 0.1 0.03 0.1 0.015 
Cu 1 5 1 15 0.4 
Dy 0.05 0.05 0.01 0.05 0.03 
Eu 0.015 0.04 0.005 0.03 0.005 
Fe 30 150 10 75 10 
Ga 0.5 3 0.2 10 0.08 
Hf 0.05 0.15 0.01 0.1 0.015 
Hg 0.05 1 0.02 1 0.05 
I 2 15 0.4 20 1 
In 0.02 0.05 0.03 0.05 0.02 
K 20 100 10 300 20 
La 0.03 0.07 0.05 0.15 0.01 
Lu 1 2.5 0.25 1 0.05 
Mn 2 5 0.5 8 1 
Mo 0.1 2.5 0.35 2.5 0.3 
Na 2 4 10 10 0.3 
Ni 10 40 2.5 60 10 
Nd 2 4 0.2 5 1 
Rb 5 10 0.5 7.5 0.5 
Sb 0.03 0.1 0.015 0.075 0.01 
Sc 0.005 0.010 0.003 0.005 0.001 
Se 1 4 0.1 3 0.15 
Sm 0.01 0.02 0.005 0.03 0.005 
Sr 30 100 2 50 5 
Ta 0.05 0.2 0.01 0.07 0.01 
Tb 0.05 0.3 0.02 0.1 0.05 
Ti 300 500 6 400 150 
Th 0.03 0.1 0.015 0.05 0.015 
U 0.1 0.5 0.03 0.5 0.01 
Yb 0.1 0.3 0.05 0.3 0.03 
V 0.3 1 0.05 1.5 0.05 
W 0.2 0.5 0.03 1 0.05 
Zn 2 10 1 5 0.5 

*Experimental conditions: Short- and long-time irradiation of 100-200 mg samples (except for APM which mass 
amounts to 0.5- 1 mg) in a neutron fluence rate of 5.1013 cm-2 s-1 for 1 min. and 10 h, respectively, followed by 
gamma-ray spectrometric measurements using a HPGe detector (rel. efficiency. 21%). For decay and counting 
times, and counting geometry see [34]. 
 
On the other hand, for all biomonitors employed, the mechanism of pollutants uptake and 
retention is usually not sufficiently known due to intricated element and water fluxes in an 
ecosystem. Consequently, the quantitative relationships between the pollutant's concentration 
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in the monitor's tissue and its concentration in a relevant compartment of the atmosphere are 
mostly not predictable. Therefore, without extensive calibration under all relevant conditions, 
the use of even of one of the most suitable biomonitor will frequently yield only qualitative 
information on atmospheric levels as a function of time or place [32]. 

There are many more biomonitors and other matrices suitable for the assessment of the 
environmental pollution. For instance, from nation-wide surveys of natural surface soils in 
Norway it has become evident that the long range atmospheric transport of heavy metals 
apparent in the moss survey is also reflected in the chemical composition of surface soil [22]. 
A similar relationship as for the level of pollution of the atmosphere and that of surface soil is 
usually found between surface waters and sediments and/or water suspended matter. 
Stratigraphic distribution of elements and other biomarkers in undisturbed lake sediments 
may even be used to trace the history of atmospheric and water pollution several hundred 
years back [33]. While for water analysis other analytical techniques are predominantly used, 
such as AAS, electrochemical methods, ICP-MS (because water is almost an ideal matrix for 
these techniques), for soil and sediment analysis INAA offers many advantages as it follows 
from detection limits for 45 elements in selected environmental matrices shown in Table 2. 
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Abstract. Analytical Chemistry Division has been utilising NAA for the past 4 decades for trace analysis of a 
number of materials. Some of the procedures developed recently for the trace element determination of high 
purity hi-tech and nuclear pure materials, geological, environmental and forensic samples by radiochemical 
neutron activation analysis (RNAA) are discussed here. Nearly complete characterization of high purity (>4N) 
As & Ga is possible by the procedures developed which are simple, rapid and elegant and can be used easily for 
the process samples. It is to be emphasised that though the INAA is simple and being widely followed, the 
RNAA alone can address the problems of analysis for elements present at ultra trace levels in many matrices. 
 
 
1. INTRODUCTION 
 
India is happy to participate in this IAEA Advisory Group meeting. Analytical Chemistry 
Division has been pursuing neutron activation analysis for nearly four decades and applying 
this technique for major, minor and trace elements in a wide variety of matrices. This division 
is being associated with IAEA and has organised workshops/ seminars apart from training 
many IAEA fellows. 

I thank IAEA for extending the invitation to attend this meeting. The Nuclear Methods 
Section (NMS), of Analytical Chemistry Division (ACD), Bhabha Atomic Research Centre 
(BARC) is actively pursuing NAA and in the continuous process of developing methods, 
particularly radiochemical neutron activation analysis (RNAA) for solving many problems 
with respect to trace and ultra trace analysis in various fields viz. materials science (High 
purity Hi-tech, Nuclear pure materials) [1–4], geological [5–8], environmental [9–12], 
biological [13], forensic [14–16] sciences. NMS is catering to the needs of inter and intra 
departments, academic institutions (IIT, University), Industry etc. with respect to Analyses, 
particularly trace and ultra trace analysis for solving many of their problems. “Apsara” a 
swimming pool type reactor (~1012 n. cm–2. sec–1) is mostly being used because of its 
versatility. The centre of the core (D4 position) has the highest neutron flux (Thermal and fast) 
and is being used in special cases. NAA is extensively applied routinely to geological and 
forensic samples at ACD. This report highlights some of the recently developed methods for 
various materials. 

2. MATERIALS SCIENCE 
 
2.1. High purity Hi-tech materials like Ga & As 
 
Trace and ultra trace quantities of various elements in high purity Ga and As [1] have been 
determined after the quantitative separation of the matrix from the analytes using ion 
exchange separation (Dowex 1, Chelax 100), thus avoiding the matrix interferences in many 
of the determinations. Because of this matrix separation, larger amounts of samples can be 
taken for analysis, thus achieving pre concentration of analytes, thereby enabling to determine 
lower amounts of impurity elements present in them. Thus alkali, alkaline, earths, rare earths, 
Al , Fe, Co, Ni, Mn, V, Cu, Zn, Mo, Sn, Cd, Ag, Au, PGM, Bi, Pb, etc. in high purity As and 
Ga have been determined and thus enabling a complete characterisation of the materials [1]. 
Tables 1 & 3 give the results, while Table 2 lists the relevant nuclear data. 
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Table 1. Analysis of Ga, As2O3, and As (ng/g) 
The separated analytes in 10–25 ml final volume  
 

Element   
 

4 N Ga 
( 0.5–2 g. )  

n = 4 

5 N Ga 
( 0.5–2 g. )  

n = 3 

AR grade 
As2O3   

( 0.5–2 g. )  
n = 4 

Specpure 
As2O3   

( 0.5–2 g. )  
n = 4 

5 N Arsenic  
( 0.5–2 g. )  

n = 3 

5 N Ga + 
5 N As    
(0.5 g. 
each) 
n = 3 

Li ND 270 � 20 ND ND ND 155 � 20 
Na ND ND ND ND ND ND 
K ND ND ND ND ND ND 
Ba 1150 � 50 340 � 25 ND ND ND 220 � 25 
Ca 510 � 25 ND ND ND ND ND 
Sr ND ND ND ND ND ND 
Al 800 � 40 380 � 25 ND ND ND 250 � 25 
Mg 900 � 45 600 � 30 ND ND 250 � 10 410 � 15 
Mn ND ND ND ND ND ND 
Fe 4500 � 140 2640 � 115 ND ND 134 � 5 1450 � 30 
Co 350 � 10 260 � 8 ND ND 225 � 5 295 � 10 
Ni 1400 � 55 30 � 3 4400 � 90 1440 � 45 2980 � 80 1550 � 60 
Cu 110 � 33 845 � 22 ND ND ND 410 � 20 
Cd ND ND ND ND 99 � 10 55 � 5 
Bi 225 � 10 ND ND ND ND ND 
Ag 340 � 5 ND ND ND ND ND 
Pd ND ND ND ND ND ND 
Pt ND ND ND ND ND ND 
Sb 870 � 15 506 � 16 ND ND ND 275 � 25 
Sn 6450 � 145 3455 � 100 1100 � 55 850 � 30 1490 � 50 2470 � 100 
Mo 140 � 8 100 � 5 ND ND ND 60 � 10 
Zn ND ND ND ND 158 � 6 75 � 10 
Pb 60 � 3 6 � 0.5 ND ND 348 � 15 175 � 5 
Cr ND ND 600 � 25 ND 149 � 12 74 � 10 
V ND ND ND ND ND ND 
Hg 650 � 35 225 � 30 ND ND ND – 

REE ND ND ND ND ND ND 
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Table 2. Conditions for activity measurements 
 

 
Isotope 

 
Half-life 

t1/2 

 
Cooling 

To 

 
Energy 

keV 
 

28Al 
 

2.32 min. 5–10 min. 1779 

52V 
 

3.75 min. 5–10 min. 1434 

27Mg 
 

9,46 min. 10 min. 1014 

165Dy 
 

2.32 h 30 min. 96 

56Mn 
 

2.58 h 30 min. 847 

152mEu 
 

9.3 h 2–4 h 122 

42K 
 

12.4 h 2–4 h 1524 

153Sm 
 

53 h 24 h 103 

140La 
 

40.2 h 24 h 816 

122Sb 
 

2.71 d 1–2 d 564 

51Cr 
 

27.8 d 2–4 d 320 

181Hf 
 

27.8 d 2–4 d 482 

86Rb 18 d 
 

10 d 1076 

134Cs 2.05 y 
 

10–20 d 604 
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Table 3. Results of 5 N Ga & As metal 
(ng/g; * = conc in �g/g) A = 5N Ga, B = 5N As 

 
Element GFAA INAA RNAA ICP-AES* ICP-MS 

 A B A B A B A B A B 
Al 
 

380 ND – ND – – < 1 
 

200 740 

Co 
 

260 225 300 295 – – < 1 18 380 

Zn 
 

ND 158 ND ND ND 220 < 1 <25 – 

Mo 
 

100 ND ND ND < 100 ND < 1 < 6 – 

W 
 

ND ND ND ND – – – – – 

Sb 
 

506 ND 532 ND 550 ND < 1 25 800 

Cu 
 

845 ND 920 ND 885 ND < 1 400 500 

Ag 
 

ND ND ND ND ND ND < 1 84 – 

Re 
 

ND ND ND ND ND ND – – – 

Pt 
 

ND ND ND ND ND ND – < 5 – 

V 
 

ND ND ND ND – – – < 200 – 

Mg 
 

600 250 <1000 <1000 – – < 1 < 200 2000 

REE 
 

ND ND ND ND ND ND < 1 – – 

Se 
 

– – ND ND ND ND – – – 

Te 
 

– – – – ND ND – – – 

Hg 
 

– – – – 225 ND – – – 

Rb 
 

– – ND ND – – – – – 

Cs 
 

– – ND ND – – – – – 

Cr 
 

– 149 ND ND – –– – 
 

<150 – 

Hf 
 

– – ND ND – – – 
– 

– – 
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Table 4. Analysis of U and thorium dioxide for REE by NAA (in �g/g) 
Sample weight: 10g for U metal and 5 g for ThO2 Process blank (30 g/800 ml acid+water) La = 39 ng, Eu = 4 ng, 
Sm= 4.5 ng, Dy = 3.3 ng 

Element    REE in U   REE in ThO2  
 Unspiked spiked  Matrix Unspiked spiked Matrix 
  added Recovered  added recovered 

La 0.26 0.52 0.83 0.04 – – 
Ce 0.2 5.0 5.2 <0.15 4.0 4.1 
Pr <0.2 5.1 5.9 <0.01 4.1 4.4 
Nd <0.2 5.1 4.7 <0.1 4.0 3.8 
Sm 0.02 1.25 1.26 0.014 1.0 1.1 
Eu 0.01 0.25 0.26 0.017 0.2 0.22 
Gd <0.2 5.1 5.1 <0.01 4.1 4.2 
Tb <0.2 1.98 2.07 <0.01 1.6 1.6 
Dy 0.01 0.5 0.52 0.01 0.4 0.4 
Ho <0.2 2.59 2.54 – 2.1 2.1 
Er <0.2 5.24 5.02 <0.004 4.2 4.2 
Tm 0.2 2.53 2.45 0.03 – – 
Yb <0.2 2.65 2.64 <0.01 2.1 2.1 
Lu <0.2 1.27 1.29 <0.001 1.0 0.98 

 

 

Table 5. Results for ThO2 and U analysis (�g g–1) 
Sample description: A = 5.056 g of ThO2; B = 9.9535 of ThO2; A* = average of replicate analyses of A and B, 
Sx(n = 4); C = 3.2001 g of NBS SRM 960 U metal; D = 6.3869 g of NBS SRM 960 U metal; C* = average of 
replicate analysis of C and D Sx(n = 4; E = average of analyses of 0.5, 1.0, 1.5, and 2 g of U metal from UMP, 
BARC, Sx(n = 4) 

Element ThO2 U 

 A B A* C D C* E 

Mg 3 3 3 �0.08 4.5 4.53 4.51�0.006 13 �0.23 

Ca ND ND – 3 3.1 3.05�0.055 ND 

Cu 18 17 17.78�0.53 4.2 4.45 4.33�0.069 13�0.49 

Zn 4 4.3 4.13�0.15 4.0 4.27 4.18�0.058 12�0.53 

Cd 0.01 0.01 0.011�0.001 0.017 0.018 0.017�0.004 0.05�0.002 

Mn 0.3 0.03 0.305�0.02 3.4 3.41 3.4�0.003 2.5�0.09 

Al 36 35 35.9�0.33 19 19  19.05�0.08 96�1.06 

Fe 30 32 31.1�1 43 43 42.95�0.06 213�2.15 

Co 0.14 0.14 0.14�0.002 1.5 1.55 1.54�0.02 2.4�0.08 

Ni 0.04 0.04 0.04�0.001 13 12.8 13.05�0.11 2.5�0.13 

Ag 0.005 0.005 0.005�0.0003 ND ND – 0.134�0.008 

Pb 0.358 0.365 0.362�0.019 0.225 0.22 0.222�0.001 0.339�0.004 

Bi ND ND – 0.02 0.02 0.02�0.003 ND 
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2.2. Nuclear pure U and ThO2 

Another crucial area, viz. nuclear pure U & ThO2, where trace elements particularly REE in 
them is needed, have also been taken up for developing methods for the same. Here again the 
matrices, which will interfere in the analysis of impurities have to be separated. Ion exchange 
separations, using Chelax 100 have been developed for the quantitative removal of -the 
matrices from the analytes [17–18]. Tables 4 and 5 list the results of the analysis. It is worth 
mentioning here that the NBS (NIST) SRM 960 Uranium had only Fe and V as certified 
value, whereas more elements (Mg, Ca, Cu, Zn, Cd, Mn, Al, Co, Ni, Ag, Pb, Bi) have been 
reported from this laboratory [3]. See Table 6. 

2.3. Cladding material Zr-2.5 wt% Nb 
 
Zr-2.5 wt% Nb has replaced Zircaloy as a cladding material in Candu -PHW reactor and it has 
a stringent specification of < 0.1 ppm with respect to chlorine. RNAA has been developed for 
the determination of Chlorine in this [4]. The chlorine content ranges from 0.1 to 2 ppm, with 
electron beam melted material giving the lowest content of chlorine (0.1 ppm). 

3. EARTH SCIENCES 

Nuclear Methods Section, ACD is helping the geologists of this country for the trace elements 
investigation of their specimens for petrogenesis and other geological processes [5–8]. NAA 
has been applied to important mineral specimens and for their characterisation [19,20]. Zircon 
is a ubiquitous radioactive accessory mineral which has been widely studied in diverse field 
of earth sciences. A number of zircon separates from diverse geological setting in India have 
been analysed for Zr, Hf, Sc, U, Th, Ta and REE by NAA reported first by the author [19]. 
The positive anomaly observed in some of the Zircon REE pattern, first reported for a 
magmatic environment, is being followed by other geologists now [21]. Sc in these zircons 
appears to be a sensitive indicator for mineral paragenesis — an observation made first time. 

The above developed procedures have been utilised for the determination of U, Th, Pb, REE, 
Sc, Ta in the detrital zircons from the basal quartz pebble conglomerate (QPC) of the 
Dhanjori group, Singhbhum Craton, Eastern India [8, 22]. The chemical ages and REE 
patterns of these zircon have helped to find the source rocks (provenance) for these zircons. 

INAA can be generally used for the geochemical studies of the rocks, sediments, minerals, 
etc. In the cases of low abundances of elements particularly platinum group metals (PGM), 
only RNAA can give the desired results. Recently geologists show lots of interests in the 
PGM analysis of geological specimens, for understanding the various geological processes 
and for prospecting of the PGM, which have economic importance. A RNAA procedure has 
been developed for the determination of Pt, Pd, Ir and Au in geological samples [23] and has 
recently applied for the determination of Au, Pd, Pt and Ir in ultramafics, gabbroic and 
chromitites rock samples (Table 7). 

4. FORENSIC APPLICATIONS 

NAA unit of Central Forensic Science Laboratory (CFSL), Hyderabad, Bureau of Police 
Research and Development of Ministry of Home Affairs, located at ACD, BARC under the 
guidance of NMS, ACD is utilising the research reactors at Trombay for the forensic 
investigations. This Unit has handled 289 forensic cases containing 2127 exhibits involving 
10473 determination from 1974 to 1997. NAA Unit, apart from routinely utilising the NAA 
for the various forensic case samples, also develops innovative procedures for the complex 
materials. Periodically, the procedures developed applied to complicated and interesting 
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forensic cases have been presented/published in journals/symposia [14–16]. RNAA of Cu, Sb, 
As and Sn in bullet lead have been utilised for the forensic comparison of bullet lead. Ba, Cu, 
Sb and Pb are the indicator elements for Gunshot residues (GSR). In case of synthetic fibres, 
Sb being present in these up to% level, Sb cannot give a clue to GSR. 

It is seen that bullet lead of IOF and some foreign ammunition contained Sn from 130–3300 
ppm [24]. RNAA of Ba, Cu, As, Sb and Sn in GSR based on the above earlier procedures has 
been developed and the results of Sn contents range from 21–183 ppm in GSR which are 
much above the control samples [16]. Thus it is seen that Sn can be another useful indicator 
element. 

5. ENVIRONMENT 
 
5.1. Recoveries of various rare metals from process/ industrial wastes 
 
5.1.1. Recoveries of heavy rare earths including Y & Sc from zirconium raffinate 

Zircon is the starting material for the production of zirconium metal, used in the nuclear 
industry. Zircon contains significant amounts of heavy rare earths [19]. In the production of 
Zr from zircon using solvent extraction separation, the heavy rare earths (HREE) do not get 
extracted and goes with the raffinate which is thrown as wastes. NAA of these raffinate cakes 
obtained from ZOP plant, NFC, Hyderabad showed high levels of HREE (200–6000 ppm) 
[25]. A solvent extraction procedure has been worked out for the separation of Sc from the 
HREE [26]. Sc which is very costly finds very many application in many Hi tech fields. Thus 
by recovering these rare metals as by products from the wastes, the environmental pollution 
also can be reduced. Thus these costly metals which go to waste in the raffinate cake can be 
recovered. 

5.1.2. Recovery of rare metals from various stages of copper mill 

It is known that many rare and precious metals are present at trace and ultra trace levels in 
copper ores. A RNAA procedure has been developed to find various trace elements present at 
the various stages of the copper mill [27]. Tables 8 and 9 show the results of the various 
samples. From the results it can be seen that various elements are concentrated at different 
parts. Hindustan copper company has set up a stream for economic recovery of Se. This study 
show that a waste which will pollute can be a useful resources for recovering rare metals, thus 
bringing a point that pollution can turn into useful value added by product.  

5.1.3. Recovery of PGM from various processes of Jaduguda ore 

The copper ores of Singhbhum Shear Zone (SSZ), Bihar, contain significant trace quantities 
of valuable metals like Au, Ag, Te, Se, Bi, Co & Ni is known and some of them are recovered 
from anode slimes during electrolytic refining of Cu in the smelter of HCL, at Ghatnila, 
Bihar. The contents of PGE, Au & Ag in the different U ore deposits of SSZ have been 
reported recently [28–30]. It is worthwhile to recover the PGE, Ore dressing section of BARC 
has taken up for concentration of these fraction. Table concentrate of bulk sulphide float have 
been analysed for Pt, Pd & Au by RNAA (Table 10). It is worthwhile to look at the Analytical 
data to work out the possible recoveries of the PGM. 

Thus a close look at the industrial/ process wastes by analysing for various elements can give 
astonishing effect besides the reduction in pollution of the environments. These studies are 
limited but if undertaken on a broader perspective wherever possible will be very much 
fruitful and give a boost to analyst, for helping to solve the pollution to certain extent. 
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Table 6. Results of analysis of NBS SRM-960 U by GFAAS and DC - arc OES (�g/g) 
 

 
Element     

 
GFAASa 

 
  Certifiedb 

 
  DC arc OES 

 
             Ac                      Bc 

Mg 4.52 �0.006 –  6  < 6 

Ca 3.05�0.055     –  <5 – 

Cu 4.33�0.069 – <2 – 

Zn 4.18�0.058 – <5 – 

Cd 0.017�0.004 – <0.1 <0.1 

Mn 3.4�0.003 – 7 8 

Al 19.5�0.075 – <10 – 

Fe 42.95�0.056 42 29 – 

Co 1.54�0.02 – <5 <1 

Ni 13.05�0.11 – <5 <12 

Ag ND – <0.1 – 

Pb 0.222�0.0001 – <5 – 

Bi 0.02�0.003 – – – 
 

aMean � standard deviation Sx (n = 4); bOnly Fe and V values are given as certified values for NBS SRM 960; 
cA and B are results obtained by two independent analysts. 
 
 
 
Table 7. Results of analysis of geological samples  
 
             Sample 
 

                            Content 
                            (�g/g) 

  Pd Pt Ir Au 
 

1.   Iron meteorite INAA 
RNAA 

– 
0.8�.09 

– 
26�1.2 

44 
39�0.4 

0.55 
0.47�0.05 

 
 
2.   PCC-1 # 

   RNAA 
        “ 
 
Lit. value 

– 
– 
 

– 

18 
16 
 

3.5–13.5 

2.0 
4.5 

 
2.9–6.9 

1.5 
3.0 

 
0.67–3.4 

 
3.  Mixed rock (chromite + sulphide) 
  

    
   RNAA 

    

       3.1      B / 0 / 4         “ 12.0 – 0.05 0.2 
       3.2      NF / 12         “   6.1 – –   0.61 
       3.3      FCS / 7         “ 17.9 – 0.07   1.22 
       3.4      0 / 1         “ – – 0.11 0.1 
       3.5      0 / 2         “ – – 0.04   0.02 

 
# ng/g. 
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Table 8. Results of the analysis of typical samples from different stages of a copper mill by RNAA 
(concentration in �g/g). Values in parentheses show SD with n = 3 
 
 Sample description 

 
 Cupro-

nickel slag 
from brass 
foundry 
 

Boiler flue 
dust flash 
smelter 
 

Converter 
flue dust 
flash 
smelter  
(Fl. Sm.) 
 

ESP dust 
(Fl. Sm.) 
 

Mosabiai 
conc. 
 
 

Liberator 
sludge 
 
 

Mist 
 

LOD* 

Re 
 

< 0.1 2.4 < 0.1 7 < 0.1 
– 

0.2 
0.01 

180 
(10) 

0.05 

As 
 

1.3 620 670 2850 85 
(6) 

4500 
(300 

3100 
(200) 

0.02 

Se 
 

40 250 150 540 350 
(35) 

9800 
1000 

27300 
(2700) 

2 

Sb 
 

10 4 25 16 10 
(8) 

1000 
85 

65(5) 0.01 

Pt 
 

< 0.1 < 0.1 < 0.1 < 0.1 <0.1 
– 

< 0.1 
– 

< 0.1 
– 

0.1 

As 
 

0.2 1.7 3 0.8 11.2 
(1) 

220 
(15) 

0.8 
(0.1) 

0.01 

Ag 
 

7 35 75 90 50 
(35) 

2100 
(180) 

40 
(2.5) 

0.1 

La 
 

     4.5 
(0.2) 

23 
(1.5) 

0.05 

Ce 
 

     8.5 
(1) 

45 
(5) 

0.1 

Sm 
 

     0.1 
0.05 

2.3 
(0.1) 

0.01 
 

Eu 
 

     0.2 
0.01 

0.3 
(0.08) 

0.001 

Dy 
 

     0.2 
0.02 

2.2 
(0.02) 

0.001 
 

Er 
 

     0.3 
0.02 

0.8 
(0.1) 

0.005 

Yb 
 

     0.2 
0.02 

1.5 
(0.02) 

0.005 

La 
 

     0.2 
0.01 

0.3 
(0.03) 

0.002 

 
* Limit of detection by RNAA. 
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Table 9. INAA results for samples from different stages of a copper mill 
(concentration in �g/g) 
Values in parentheses show SD with n = 3. 

 
No. Sample 

description 
Co As Se Sb Te Re Au 

1.  Rakka Tails 56 .2.5 16 0.7 50 ND 0.06 

2.  Sludge from 
H2SO4 plant 

260 4600 1130 ND 150 4.5 3.4 

3.  Composite boiler 
dust 

1400 390 230 6 500 35 0.2 

4.  Composite ESP 
dust 

100 560 250 9 700 6.1 0.2 

5.  Composite 
converter dust 

550 160 400 6 360 1.4 4.4 

6.  Composite SCF 
dust 

1150 90 30 3 640 0.6 2.4 

7.  Composite SCF 
dust 

2650 35 340 6 130 2.3 3.7 

8.  Composite SCF 
slag 

1850 
(200) 

11 
(1.5) 

40 
(5) 

4 
(0.5) 

120 
(10) 

43 
(4) 

0.01 
(0.001) 

9.  Composite anode 
sample 

11 
(1.5) 

ND 
– 

540 
(50) 

3 
(0.02) 

350 
(30) 

0.6 
(0.05) 

10 
(0.05) 

10.  Mist 48 
(5) 

2200 
(200) 

25000 
(2800) 

46 
(5) 

1100 
(120) 

150 
(20) 

0.5 
(0.025) 

 

 LOD* 0.1 0.1 5 0.1 1 0.1 0.005 

*Limit of detection. 
 
 
 
 
6. INTERCOMPARISON EXERCISES – IAEA 

Participated in many IAEA Inter comparison exercises/co-ordinated research projects, etc. 
Recently participated in the Inter comparison Run on determination of toxic and other main 
and trace elements in IAEA-390 a set of three algae materials (IAEA-391 algae (low level) 
IAEA-392 algae (environmental level) IAEA-393 algae (elevated level). In these samples, it 
was observed that elements like Cu & Zn seem to be inhomogeneous which was mentioned 
while reporting (Oct. 1, 1996). We are awaiting for the final compiled results from IAEA. 

To conclude, the high potential of NAA technique has to be tapped fully by more innovative 
ideas/ research to solve problems in very many areas. Thus NAA may surpass most of the 
technique in its usefulness as a very versatile technique for trace and ultra trace analysis, of 
course the limitation being the availability of a research reactor. 
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Table 10. Precious metal contents Jaduguda uranium ore 
 
                         Sample 
 

                  Content 
                   (ng/g) 
 

       Pt       Pd     Au 
 

  1.   Narwapahar      ND     169     ND 
 

  2.   Surda Cu concentrate plant tailing       ND      ND     2.4 
 

  3.   Surda U plant table concentrate      ND      8.7   10.0 
 

  4.   Rakha Cu plant tailing      ND       7.5     1.0 
 

  5.   RURP table concentrate      ND      ND     4.1 
 

  6.   Mosabani Cu conc. Plant tailing      ND    18.7     4.2 
 

  7.   MURP table conc.      ND      ND   58.5 
 

  8.   Coarse fraction of Jaduguda mill tailings     0.89 #    34.0   29.2 
 

  9.   Fine fraction of Jaduguda mill tailings      ND    24.0     3.9 
 

10.   Bulk sulphide float from BRP, Jaduguda  24 .0#  166.0 191.0 
 

11.   BRP Cu conc.     2.76 #     19.1   69.0 
 

12.   Magnetic conc. from Jaduguda tailing       ND      ND           8.2 
 

 
# 
�g/g. 

 
 

 

7. SUGGESTION FOR CONSIDERATION 

We would like to suggest that a feed back is very much necessary in case of intercomparison 
exercises and the final compiled analytical data from IAEA, at their earliest is necessary and 
may enable us to evaluate our analytical data. We have responded to the analytical quality 
control services (AQCS) – performance survey form and in the guiding questionnaire sent by 
Mr. Dale W. Jacobs (Consultant of IAEA). We have suggested that there should be more 
intercomparison runs for biological, geological and if possible forensic samples. Now 
analytical methods for Au, Ag and PGM are needed for the geological community, because of 
their economic importance/ significance, we suggest that IAEA can think of preparing 
reference materials for the above purpose and also for high purity/hitech materials. These may 
have a demand from the researchers who are working in these fields for use as a International 
standard samples for evaluation of their analytical process. We also support the idea to 
generate a comprehensive general purpose. Quality assured nuclear data library specialised 
for NAA application. This is discussed in the Appendix to the paper. 
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ANNEX 
 

S. Ganesan*, R. Parthasarathy** 
*Theoretical Physics Division, ** Analytical Chemistry Division, 

Bhabha Atomic Research Centre, Trombay, Mumbai, India 

At the IAEA Advisory Group Meeting on “Computer Software for Neutron Activation 
Analysis” held during 25–30, at Seoul, Republic of Korea, the experts identified that there is a 
need for a specialized nuclear data library for NAA. It was also suggested that this could be 
done by appropriate coding of gamma ray lines in a more general nuclear data library. 

The nuclear data that we should have information on are the characteristic energies and 
intensities of gamma rays emitted by radionuclides which are commonly used as fingerprints 
for nuclide or isotope identification. The various techniques such as Neutron Activation 
Analysis (NAA), Prompt Gamma-Ray Activation Analysis (PGAA), and Neutron Depth 
Profiling (NDP) which are often used for research in the environment, biomedicine, geology, 
archaeology, industry etc all make use of basic nuclear data. Over the years significant 
technological improvements have taken place in gamma-ray detectors, and the construction of 
more intense neutron sources leading to a variety of applications of neutron activation 
analysis, and very precise nuclear analytical techniques. All these techniques are based on 
"isotope or nuclide fingerprint" identification. These techniques, however, require the 
availability of suitable and up-to-date nuclear data libraries. 

Typical computer programs for analyzing gamma-ray spectra in activation analysis use data 
from libraries of gamma-ray energies, intensities, thermal neutron cross sections, isotopic 
abundance, half-life of radionuclides, etc. Although most of these libraries are subsets of the 
Evaluated Nuclear Structure Data File (ENSDF), their cut-off dates may not be uniform and 
thus contain data from different vintages. 

Many users in developing countries use old handbooks. The use of 10–15 year old data 
libraries in activation analysis, especially in developing countries is not uncommon. The 
numerical values are generally reliable for well known cases (e.g. Cs-137, 662 keV line) but 
not necessarily so for complex cases.  

This situation may be attributed to technical difficulties for accessing on-line services via the 
Internet available from the classical nuclear data service centres such as the IAEA-NDS. The 
ENSDF using Telnet and the World Wide Web can be accessed for specific data Thus in 
principle, the scientists working on NAA can make retrieval and processing of updated 
nuclear data for analytical work using the IAEA-NDS on-line systems to access data and 
perform appropriate analyses.  

The creation of a new nuclear data library on prompt neutron-capture gamma rays for 
activation analysis can make use of the general activation library FENDL/A-2 created 
recently at the IAEA Nuclear Data Section for studying neutron activation rates. FENDLA/ 
(contains the library FENDL/A, version 2.0 of March 1996, of pointwise neutron activation 
cross section data as assembled by the Culham/ECN team at UKAEA Culham in March 1996. 
The basic pointwise data include non-zero cross sections below 20 MeV for 13006 neutron 
reactions on 739 target nuclides (including metastable states). 

The appropriate coding of the gamma ray lines should be added to the FENDL/A-2 library so 
that the specialists working on NAA will be able to have easy access to a Quality Assured 
Nuclear Data library. This can be distributed on a CD-ROM. This task is suitable for a Co-
ordinated Research Programme. 
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UTILIZATION OF THE SLOWPOKE-2 RESEARCH REACTOR 

G.C. Lalor 
University of West Indies, 
Kingston, Jamaica 
 
Abstract. SLOWPOKEs are typically low power research reactors that have a limited number of applications. 
However, a significant range of NAA can be performed with such reactors. This paper describes a SLOWPOKE-
based NAA program that is performing a valuable series of studies in Jamaica, including geological mapping and 
pollution assessment. 

1. THE CENTRE FOR NUCLEAR SCIENCES (JAMAICA) 

The SLOWPOKE reactor in Jamaica is presently the only reactor in the Caribbean. It first 
achieved criticality in March 13, 1984 and is used mainly for neutron activation analysis in 
programmes which aim to: 

(1) Introduce Caribbean scientists and technologists to peaceful applications of nuclear 
sciences; 

(2) Carry out inter-disciplinary research of national and regional importance that is likely to 
contribute to the development of the region; 

(3) Be a resource to other institutions, as appropriate; 
(4) Provide suitable training. 
 
2. INFRASTRUCTURE AND RESOURCES 
 
2.1. Premises 

The Centre is located on the Mona Campus of the University of the West Indies and is near to 
most of the main science and technology activities in the island. It occupies a modern air-
conditioned building of 946 m2 in area, which houses laboratories, a nuclear reactor room, 
sample preparation and clean rooms, computer rooms, a liquid nitrogen production plant, 
offices, conference/seminar rooms, and a public area for external users. 

2.2. Equipment 

The main item of equipment is the SLOWPOKE 2 nuclear research reactor. It is used mainly 
for neutron activation analysis of rocks, soils, sediments, air particulates, and biological 
samples. Other major items are: 

(1) X-ray fluorescence spectrometers; 
(2) A Perkin Elmer Atomic Absorption Spectrometer Model 5100; 
(3) A Lachat QUICK-CHEM 8000 Automated Ion Analyser; 
(4) A DIONEX 4500 Ion Chromatograph; 
(5) SUN work stations, PC servers and workstations, and full access to a Convex 3440 

supercomputer. 
 
3. SPECIALISED SERVICES 
 
A number of services are offered by the Centre. These are outlined in the following sections. 

3.1. Personnel dosimetry 

The Centre is the official radiation protection facility for Jamaica. It provides 
thermoluminescence dosimetry services for more that 600 local users and an equal number 
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regionally. The Centre also offers: (a) inspection and monitoring of radioactive sources as 
well as radioisotope contamination monitoring (b) advice on radiation sources and the 
handling, storage and transport of radioactive material. 

3.2. Measurement of radioactivity 

Since the Chernobyl incident, the Centre has been monitoring certain food imports and 
certifying some imports. 

3.3. Analytical services 

The Centre provides neutron activation analysis and other analytical services to the public and 
private sectors. 

3.4. Main research programme 

The main programme has been a set of geochemical investigations applicable to a number of 
environmental and resource components such as air, water, soils, rocks, and sediments. The 
resulting data are stored in an on-line SQL multi-purpose database which can be coupled to a 
geographic information system. Together they are applicable to such fields as agriculture, 
environmental assessment and protection, land use, natural resource identification and 
management, as well as animal and human nutrition and health. 

4. MAJOR STUDIES COMPLETED BY THE CENTRE FOR NUCLEAR SCIENCES 
 
4.1. Geochemical mapping of Jamaica on the regional scale 

The construction of a high-precision, regional geochemical database of Jamaica is underway. 
An orientation study established that soil samples of particle size <150 µm provide the 
optimum sampling medium for a regional geochemical survey of Jamaica. Concentration and 
distribution data for thirty-one elements, mainly by NAA, are now available for soils at a 
sample density of 1 in 8 km2. This work is the basis of most of the present and projected 
studies. 

4.2. The gamma radiation profile of Jamaica 

The total gamma activity across Jamaica has been measured using vehicle-borne equipment. 
In general, the enhanced gamma activity is highly correlated with the presence of bauxite and 
is due to enrichment in uranium and thorium but not potassium. There has been significant 
transport and concentration of radioactive isotopes over time in the areas below the bauxite 
deposits. Studies are continuing. 

4.3. Air particulates 

Air particulates have been surveyed at twenty-three sites across Jamaica for total suspended 
particulates (TSP) and the elemental contents have been measured by neutron activation 
analysis and x-ray fluorescence. The average values of TSP are well within the standard levels 
recommended by the World Health Organization (WHO). However, there are areas of heavy 
vehicular densities in which the values exceed the WHO limits. The results indicate that 
vehicle emissions are the major source of lead in particulate matter. 
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4.4. Assessment of arsenic risks in the parish of St. Elizabeth 

A soil arsenic anomaly was discovered and defined with respect to size and arsenic levels. 
The area in which the arsenic concentrations exceed the 95th percentile (>65 mg kg-1) of the 
concentrations found island wide is approximately 10 km2. The anomaly appears to be due to 
an ancient hot spring environment, which caused the introduction and deposition of Fe-AS-S 
as pyrite and arsenopyrite in the limestone. These were subsequently oxidized and weathered 
to yield arsenic rich soils also enhanced in elements such as Sb, Fe, and Co. Despite the high 
soil arsenic content, there appears to be no immediate health risk. 

4.5. Mitigation of lead hazards in the Hope Mine area 

The site of a school for 4-6 year olds near to the abandoned Hope Mine is highly 
contaminated. The blood lead levels of the school children led to interventions, including the 
isolation of lead waste and outcrops by covering them with a layer of marl and then cement. 
Subsequent blood tests showed reductions in blood lead levels, by as much as factors of three. 
The average has been reduced significantly and there are now values at or below the 
recommended U. S. Environmental Protection Agency norms. 

5. FUTURE 

The Centre for Nuclear Sciences (CNS) is being transformed into a node of a network of 
centres of excellence being established in the countries of the South. The new name, the 
International Centre of Environmental and Nuclear Sciences (ICENS), reflects its major 
interests and the continuing application of nuclear techniques to environmental problems. 

This new Centre is based on and incorporates the existing CNS, the work of which will be 
expanded and intensified. The ICENS will increasingly become a host for a wider range of 
co-funded and co-sponsored projects and collaborative research, especially on problems 
requiring an interdisciplinary approach. 



 

..   
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FROM SCIENTIFIC RESEARCH TOWARDS SCIENTIFIC SERVICE BY INAA: 
EXPERIENCES AND CONSEQUENCES 

 
P. Bode 
Interfaculty Reactor Institute, Delft University of Technology, 
Delft, Netherlands 
 
Abstract. An evaluation has been made at the laboratory for INAA in Delft of the type of analytical protocols 
requested for by scientific and commercial customers. Examples are given of the differences in requests from 
industrial research and university research and the consequences for the analysis protocol to be selected. On 
basis of experience with the users and clients and customer satisfaction evaluation results, a SWOT (Strengths, 
Weaknesses, Opportunities and Threats) analysis has been made. This analysis makes clear that many of the 
frequently mentioned ‘advantages’ of INAA do not excite the clients. One of the typical weaknesses of the 
technique results from lack of automation, indispensable for effective and economic operations. This may 
hamper small INAA groups to become interesting for large-scale and/or parallel requests, to become competitive 
and self-sustainable. Suggestions are given how the weaknesses and threats may be circumvented and how the 
strong points and opportunities may be successfully exploited.  

 

1. INTRODUCTION 

There are several reasons why neutron activation analysis groups are nowadays requested to 
identify beneficiaries (customers) for their technique and to start ‘commercial’ activities. 
Many institutions deal with budget cuts; in other organizations the existence of (industrial) 
customers is considered important for public justification of the existence and continuation of 
the reactor. The NAA laboratory has to face the reality that it may have to shift part of its 
attention from (self-directed) scientific research to (customer directed) scientific services. 
Most probably, this implies a change in culture, policy and in the technical and organisational 
management at the laboratory.  

There are various analytical problems in the applied sciences for which INAA may be the 
preferred technique to obtain information on elements and their concentrations. To this end, 
the NAA group has to understand its position in the market, and it should know that it has to 
offer. The questions to be answered are: “ Who is interested in INAA anyhow, and why would 
INAA be selected? What is the added value of our activities?” There are numerous publications 
explaining the advantages and shortcomings of NAA, and many comparisons have been made 
with other methods for elemental analysis. However, nearly all of these evaluations themselves 
‘by radiochemists for radiochemists’. It can be of considerable more value to the NAA 
laboratory to understand the customers’ view in this. 

Several NAA laboratories from the academic community have proven to be successful in 
acquiring contracts for analyses. A few industries have established their own NAA laboratories 
to support their companies’ requests[1,2]. Companies exist offering a wide range of analytical 
techniques for element analysis, including NAA. Each of them will have its own experience with 
customers, will have a different variety of samples analysed and will have a different way of 
dealing with customers’ requests. 

In this paper the experiences of the laboratory for INAA at Delft are given as a case study. The 
laboratory for INAA of the Interfaculty Reactor Institute at Delft has some 20 years 
experience with external users of the INAA facilities, and in the last 10 years a fully 
commercial business unit has been integrated with the research group. 
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2. TECHNICAL AND ORGANISATIONAL ASPECTS 

The Nuclear Analytical Methods research group supervises the facilities of the laboratory for 
INAA[3] at Delft. The main task of this group is the development of physical and mathematical 
methods of radioanalysis, with the emphasis on gamma-ray spectrometry and neutron activation 
analysis. ‘Routine’ INAA is carried out by a commercial business unit, in liaison with the 
research group that has the final responsibility for the analytical quality. All activities related to 
the use of the facilities and the conduct of INAA are covered by the laboratory’s quality system 
[4] which has been accredited for compliance with EN45001 (closely following ISO Guide 25).  

The laboratory for INAA identifies ‘external’ and ‘internal’ customers. Scientists from other 
universities or research establishments, governmental bodies and industry form the first category. 
The internal customers are scientists within the mother Institute, mainly from the department of 
Radiochemistry. Some of these internal customers are trained by the laboratory to carry out the 
analyses on their own. 

The external customers are fully charged for the analyses whereas the internal customers only 
pay for the consumables (capsules, internal quality control samples, etc). 

2.1. Sample types 

The sample types, which are being analysed for external customers, are given in Table 1. Plastics 
is currently the largest segment: a perfect niche for INAA since it can be done non-destructive. 
These analyses are mainly for law enforcement purposes and reliability of the analyses is very 
important since the results may have large economical consequences. Analysis of human toenail 
clippings is another major component. These are analyses for epidemiologists, and here again 
advantage is taken of the non-destructive nature of INAA. The samples are precious collections, 
analysed already several years ago for Se, thereafter archived and now processed again for other 
elements. There is a trend for more requests for analysis of new materials, composites, silicon 
carbide, carbon fiber, alumina, etc.  

The samples from internal users are mostly resulting from biomonitoring projects (lichens, 
mosses, tree bark, soil, air particulate matter). 

2.2. Analysis protocols 

The traditional protocol for multi-element analysis was (and still is): 2 irradiations, 3 
measurements (the shorts, one after 1 week and one measurement after about 1 month); 50–60 
elements reporting. The various requests and particularly the needs of the external customers 
made necessary to develop different analysis protocols. 

Most external customers appear not to be interested in full multi-element analysis, even not 
when the data is given for ‘free’ together with the data requested in the first place. Customers 
are usually oriented to one or a few given element(s) (see Table 2) whereas their main 
demand lies with turnaround time.  

The majority of the work for external customers deals with one measurement 2–4 days after 
irradiation and a single element determination, or a group of some 12 elements which can be 
determined in this manner. The turnaround time of these measurements is about 1 week–10 
days (see Table 3). This is usually acceptable for customers who compromise between 
number of elements and turnaround time. The perception of a short turnaround time is 
enhanced when taking advantage of the weekend for decay, e.g. by receiving the samples and 
irradiation on Thursday, counting on Sunday night and reporting on Monday afternoon or 
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Table 1. Sample types with percentage of the total throughput, as analysed by the Laboratory for 
INAA in Delft 
 

Plastics 40% 
Plants and Biomonitors 30% 

Toe-nail clippings 12% 
Metals 6% 

High-tech materials (composites, carbides) 5% 
Blood, serum 3% 

Various industrial products (textile, 
packaging material, paint, resins, solvents, 

acids) 

3% 

Air filters 1% 
 
 
Table 2. Requests (in percentage of total throughput) for number of elements to be reported for 
external en internal customers of the Laboratory for INAA in Delft 

 
 External customers Internal customers 

1 element 40% 8% 
2 elements 20% 4% 
3 elements  8%  4% 

Group of elements 20% 14% 
> 3 elements 12% 70% 

 
Table 3. Analysis protocols (in percentages of total) applied for external and internal customers of the 
Laboratory for INAA in Delft. S: NAA applied to short half-life radionuclides, M: NAA on basis of 
intermediate half-life radionuclides (e.g. measurement 1 week after irradiation), L: NAA on basis of  
long-lived radionuclides (e.g. measurement 1 month after irradiation) 

 
 External customers Internal customers 

Shorts (S) 20% 13% 
Medium (M) 60% 13% 

Long (L)  2%  2% 
S + M  1%  
S + L  1%  
M + L  2%  

S + M + L 10% 70% 
Special optimised  5%  2% 

 

Tuesday morning. In limited cases analyses are carried out with 2 days turnaround time. In 
addition a variable number of analyses is done with the fast rabbit systems. As mentioned 
before, only a few external customers are interested in total multi-element determinations.  

For the academic market segment the situation is different. Here mainly full multi-element 
analyses are requested because a large number of more elements are needed for the factor 
analysis in the interpretation of the biomonitoring projects. However, it cannot be excluded 
that the request for multi-element data also might be influenced by the fact that these analyses 
are done at almost no charge. Experience with services to groups at other universities learned 
that requests for multi-element data changed rapidly in request for a limited number of 
elements when the groups were charged for the analyses. After all, an analysis consisting of 
one irradiation and one measurement is less expensive than an analysis consisting of two 
irradiations and three measurements.  
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2.3. Number of samples 

Most of the external customers offer their samples in small batch sizes, and certainly not in 
hundreds at a time or so). The maximum number of samples processed simultaneously (which 
can be packed into one rabbit) is 14. The number of batches for external customers is about 250 
per year, and for internal customers about 150. Total number of samples processed is about 4000 
–4500. To this, the number of control samples, blanks and flux monitors should be added which 
makes the total number of capsules processed in the order of 15,000 per annum. Since some 
samples are measured more than once, the number of spectra analysed is estimated to be 
approximately 40,000 per year.  

2.4. Customer satisfaction 

The laboratory evaluates every 3 years its customers’ opinions on the services provided. An 
independent bureau carries out this evaluation to avoid any conflict of interest between the 
customers, the laboratory and the interpretation of the evaluation. Some typical conclusions of 
the most recent evaluation are: 

�� Customers complained about the attainability of the laboratory’s employees. The direct 
access to the various extensions was not sufficient due to the high mobility of the 
employees between offices, laboratory and counting room. Such a small group cannot 
afford a permanent telephone operator. This shortcoming now has been accounted for 
via the introduction of cellular phones. 

�� The layout of the reports is too scientific. Quite a few customers appear to be not 
familiar with the scientific E-format in reports, the concept of detection limits or 
uncertainties, and even not with the chemical symbols for the elements. It is not always 
trivial that, e.g., “Sb” means “Antimony”. A new layout is now being developed. 

�� Turnaround times of one week or even longer is often still quite acceptable, differently 
from what is often be proclaimed as one of the drawbacks of NAA. Customers are 
satisfied as long as the reporting is done within the time frame, guaranteed by the 
laboratory in advance.  

�� Many customers turn to NAA after their in-house analytical techniques failed for the 
analysis needed. It is therefore important to invest on building awareness on the 
opportunities of NAA for the potential market segments. 

 
3. STRENGTHS, WEAKNESSES, OPPORTUNITIES AND THREATS 

The (potential) customers often have an entirely different perception of what NAA has to 
offer as an analytical technique. They often apply for the use of NAA when all other 
techniques have failed, as has been mentioned before. Moreover, the contracting-out is 
sometimes a psychological barrier to take, since it is more-or-less synonymous with ‘loosing 
control’. The strong and weak points of NAA are balanced against the ‘in-house’ techniques 
and the disadvantage of contracting out. It can be expected that weak points of (the laboratory 
for) NAA get more emphasis, whereas some of the advantages as proclaimed by 
radiochemists, are taken as granted.  

The view of outsiders helps the NAA laboratory to understand the potentials of the technique 
to provide (scientific) services. Such a view can be summarised in management terms as a 
‘SWOT’ analysis; ‘SWOT’ being the acronym for “strengths, weaknesses, opportunities and 
threats”.  
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3.1. The strong points of INAA  

�� The method is useful for materials which are hard to dissolve. 
�� The results are reliable. It can be made clear that NAA is matrix independent, and 

calibrant independent; that the feasibility and detection limits are predictable. 
Customers ask for ‘quality’ but not always in terms of accuracy and precision. 
Moreover, they are seldomly interested in results of reference material analysis or 
proficiency testing. Customers simply expect that a laboratory — especially a university 
laboratory — must have a good performance in this all. Their view on quality is like one 
of its definitions: to get what has been asked for, especially within the time frame 
agreed upon. It is expected that the analysis can be reproduced and eventually that the 
laboratory can stand-up in court to defend its results. It stresses the importance of 
quality management.  

�� The analysis can be repeated on the same material for additional information, in case of 
doubt and also other methods can be used to analyse the same material. Eventually, the 
analysed material can be returned to the customer. 

  
3.2. The weak points of INAA 
 
�� The turnaround times may still sometimes be prohibitively long, not just because of 

physical problems but also because of organisational problems. And because of a too 
academic approach of the analytical request. Any NAA laboratory has to learn that it 
has to optimise its service to satisfy the customer rather than to satisfy the NAA 
specialist. In many cases there is no need to reach a better than 5% counting statistics 
precision, and even 20–30% may suit equally good. The traditional approach in INAA 
is to get as many as possible elemental data with as good as possible precision. It was 
demonstrated in the above that customers may be interested in 1–3 elements only, and 
even more often, they want an answer like: “is the concentration yes or not above a 
certain level”. 

�� Another way to satisfy customers is to increase capacity by shorter counting times, 
shorter irradiation times or to optimise in decay time. Traditionally, one of the 
measurements in INAA is done 3–5 weeks after irradiation. However, often already 
reasonably good results can be obtained some 10–12 days after irradiation when the 
24Na background has reduced substantially. Similarly, satisfactory results can be 
obtained after 3 days decay rather than to wait a full week after irradiation. Modern 
days’ counting equipment can easily handle moderate or high counting rates. In 
principle, there should be no significant difference in results obtained via a 
measurement with 5% dead time and with 60% dead time — if using the pulser method 
at constant decay rate, or ‘loss-free counting'. It all can contribute to a higher throughput 
and more customer satisfaction.  

�� There is no culture present in research laboratories to have facilities ‘stand-by’ to suit 
requests for analysis. Many NAA laboratories are often not equipped to handle parallel 
requests for analyses. Moreover, NAA is not a method of elemental analysis in which 
the capacity can easily be extended or with which routine analysis can be done at a high 
and quick throughput. This is a weak point when considered to be an alternative for 
laboratories employing other methods with equipment, especially developed for routine 
services and an organization tuned to this as well. In many cases the limited technical 
and organisational capacity may result in frustration with the customers and a 
confirmation of the existing image that research institutions are unreliable partners in 
scientific services. Eventually it also may adversely affect the justification of the reactor 
as such. 
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�� Sensitivities are sometimes not good enough anymore to suit present day’s levels of 
interest (environmental and industrial research); Pb cannot be determined and Cu is 
troublesome as well.  

�� Generally, NAA is poorly advertised with potential customer, like in the communities 
of applied sciences. Usually radiochemists speak about their technique to radiochemists 
only, at radiochemical conferences. At more general spectroscopic conferences hardly 
any contribution is found on the status and opportunities of NAA. It is an illusion to 
expect that the many publications on NAA and its applications have their impact. 
Customers, and this count in particular for the non-university market segment, do not 
read J.Radioanal.Nucl.Chem., Nucl. Instr. Meth. or Anal.Chem.; they are not interested 
in the resolution of Ge detectors, the k0- phenomena nor in the results of reference 
material analysis. NAA is not an analytical technique that belongs to the package of 
methods taught and trained at technical schools and universities. Taking into account 
the overwhelming presence of techniques like AAS, ICP and XRF, it should be feared 
that within other analytical laboratories there is rather limited awareness even on the 
existence and accessibility to NAA.  

�� The customer has to send his samples to the NAA laboratory rather than that the 
analyses can be done ‘in-house’. The customers may perceive this as ‘loosing control’, 
not as much on the conduct of the analyses but more on the certainty that the results will 
be available at a given time.  

 
3.3. The opportunities for INAA 

 
�� The need for reliable results. Reliability is sometimes more important than level of 

accuracy, though the combination of reliability and accuracy is of importance when 
analyses have to be done for e.g. product control or law enforcement. 

�� Analysis of materials for which no matrix-matching reference materials are available. 
The common approach in other methods of elemental analysis is the use of matrix 
matching reference materials for calibration. The variety of materials to be analysed and 
trace elements sought develops itself much faster than the availability of suitable 
reference materials and certified concentrations. This applies especially to the material 
sciences and for ultra low concentrations. In many laboratories awareness exists that the 
reliability of the analyses is questionable if such matrix-matching reference materials 
are not available.  

�� Unique materials which should not get lost. This applies e.g. to materials of which the 
sampling has been tedious (e.g. cosmic dust); materials which cannot be collected again 
(e.g. human bioindicators such as hair, nails, tissue, blood, urine; but also materials 
related to environmental pollution like atmospheric dust); materials of which the same 
test portion may have to be analysed again, by NAA or any other technique (see for 
instance the example given in the above of the toe nail clippings) depending on the first 
results; materials related to forensic work, in which there should be no loss of evidence. 

 
Validation of other methods for element determinations. Increasing laboratories (research, 
industrial and service) laboratories have to fulfil the validation criterion as laid down in ISO 
Guide-25 or equivalent standards. Sometimes this validation can only be done by comparison 
with another technique. Here there are opportunities for NAA laboratories for continuing 
support to external customers. Perhaps it may not result in a large supply of samples but it 
certainly will contribute to respect and an expressed need for the existence of the NAA 
laboratory.  
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3.4. The threats to INAA 

�� Too little awareness on the existence of NAA. There is a strong need for renewed 
awareness building on the modern’ days opportunities of NAA. As has discussed in the 
above, it is a big mistake of the NAA community if this remains limited to the 
radiochemical and scientific journals only. Customers are found by contacting them in 
their own media, and in a language they comprehend and which is directed to their needs. 
Technical journals are a better choice than scientific journals. Mailings of brochures may 
only be of value after potential customers have asked for more information; otherwise, it 
ends at the pile of daily junk mail. The customer satisfaction evaluation again 
demonstrated how important it is to prevent the use of jargon and to be aware of the fact 
that the first contact might be with non-scientists. 

�� The attitude of researchers is too introverting. In many NAA laboratories, the technique is 
still applied as it has been developed 30 years ago, optimised to find as many elements as 
possible, at the best possible precision. It is of paramount importance to find out what is 
important for a customer: accuracy, precision, single or multi-element, turnaround time, 
sensitivity, price…. The analysis should then be optimised to the customers’ request and 
often a protocol has to be selected different as one would do from the NAA point-of-view.  

�� The academic environment is almost synonymous for unreliability in planning. Deadlines 
are seldomly met; this applies to contributions to scientific conferences but also for 
reporting results. Laboratories have to introduce a style of working with commitment to 
planning of all aspects of the analysis, like availability of consumables, equipment checks, 
use of equipment etc. There should also be a rigid procedure for checking the results 
before reporting them, including quantifiable criteria. It might be disastrous for a 
laboratory if still mistakes are found after reporting. Quality management principles will 
also turn to be of importance to reduce the amount of repetition of work — which may 
result in small disasters when capacity is limited — and to carry-out timely the required 
performance checks, maintenance, stock control and so. 

�� Unreliable reactor schedules. In institutes with reactors with extensive neutron beam 
physics programs sometimes the reactor operation is tuned to the experimental conditions 
for this beam physics work. This also may apply to full power operating schedules which 
may be delayed due to modifications needed of the beam experiments. As thus, it may 
hamper the scheduled irradiations for NAA (and e.g., also for isotope production). 

�� Unreliable operation of NAA equipment since there is no return of revenues for 
replacements and investments. This is a most serious threat, since it quickly moves the 
laboratory in a downward spiral. Sometimes this may be by-passed by payment ‘in 
natura’, e.g. via procurement of equipment by the customer. However, there are no 
general guidelines to overcome this threat since it is typically a political problem within 
the mother organisation. 

�� Lower detection limits are required than can presently be attained. Large volume Ge 
detectors and especially well-type Ge-detectors should be considered the present days’ 
work-horses for NAA laboratories. The better detection limits, increased throughput and 
good economics justify their procurement and replacement of conventional Ge–
detectors [5, 6]. Moreover, high-count rate electronics is now standard available, which 
allows for measurements e.g. after shorter decay times of interfering radioactivity [7]. 
These instrumental improvements will not effect that NAA detection limits may be 
equally good as proclaimed by the — interference free !! — detection limits of e.g. 
AAS or ICP. But they are opportunities to fulfil customer’s requirements at relatively 
low investment. 

�� Automation is difficult to be realised. Many laboratories are lacking the opportunities to 
develop their own automation. As such, throughput is limited and turnaround times may 
remain prohibitively long. Commercially available sample changers are scarce and 
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containers are not standardised; automation of software is in principle feasible but 
should be done by the laboratory itself, which in the practice turns out to be not always 
possible. The poor situation on easily available automation in NAA is in big 
contradiction to developments with other techniques where automation is almost a 
standard option.  

4. CONCLUSIONS 

In many countries NAA laboratories have to face the reality that the daily efforts may have to 
be shifted from (self-directed) scientific research to (customer oriented) scientific services. 
This implies a change in culture, policy and technical and organisational management at the 
laboratory. External customers have different requirements to the scientific services than 
internal customers for their scientific research. It should be noted that the examples given in 
this paper apply a specific case study. However, it demonstrates the differences, and NAA 
laboratories should be aware of the fact that external customers have their own perception of 
the advantages and weaknesses of NAA. The advantages of NAA, as found in numerous 
review articles and books, have been compiled from the inside out, rather than from the 
customers point-of-view. Their view on the strong points and weaknesses of the method may 
be different from case to case. NAA laboratories should be alert on this, and develop a 
flexibility to respond on it.  

A weakness that can easily become a serious threat to NAA — and the opportunities for 
scientific services — is that the method is hardly demonstrated outside the typical 
radiochemical society. The number of papers on NAA in e.g. Analytical Chemistry is already 
declining for many years, and the method gets hardly any attention at large spectroscopic 
meetings. There are fewer and fewer technical schools and universities with introductions and 
practical training on NAA. There is little awareness on the new developments and 
opportunities of the method for modern days’ research and requests.  

A remaining problem is that automation in NAA — indispensable for effective and economic 
operations — is hardly commercially available, and often has to be developed in-house. This 
may hamper many small NAA laboratories to become interesting for large-scale and/or 
parallel requests, to become competitive to other methods of analysis and to obtain the funds 
to compensate for budget cuts. 
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Abstract. A review of the current trends in NAA, its applications and the use of research reactors for NAA is 
given. A case is made for a more versatile, interdisciplinary approach towards NAA, operating in the context of a 
larger national or regional nuclear analytical center where other nuclear and non-nuclear analyses can be 
combined.  

1. INTRODUCTION: GENERAL THESIS 

It should be stated at the outset that the theme of the Meeting is very timely; many 
experienced users and practitioners of NAA have been concerned for some years about trends 
in usage (or non-usage) of NAA. Indeed, in my opinion, the situation is approaching a crisis 
point and the topic of this meeting could without great exaggeration be retitled “How to 
ensure the survival of NAA and research reactors”. In this revised title two worrying trends 
are identified: the survival and maintenance of NAA itself and the availability of research 
reactors: obviously the first is almost totally dependent on the second. But it is also true that 
the continued existence of research reactors is in turn dependent on a coherent, intelligent, 
useful and viable scientific programme for their utilization in which NAA should have a 
major role. Therefore these two strands are interconnected. However, there are other 
important factors and a wider socio-political context to be considered. 

This paper is written from the standpoint of the developed countries, particularly in Europe. 
The situation in developing countries is rather different, and the priorities and problems of a 
different character. In Europe, the two trends mentioned above are related to some 
inescapable facts of life, and it is sensible to consider them, even though we may not be able 
to alter them greatly. The first is the anti-nuclear climate in which scientists and society as a 
whole are operating. In this environment it is very difficult to persuade Ministries and other 
bodies financing scientific investment and formulating policies to maintain (let alone 
enhance) a viable programme in nuclear science, with the necessary infrastructure. We all 
know that research reactors in the developed world are approaching the ends of their working 
lives – many are over 30 years old. The building of new research reactors is highly 
problematic (e.g. Oak Ridge, Munich), and the renovation of existing ones to extend their 
lifetime almost as difficult. Numerous examples illustrating these statements can be brought 
forward. The trend to closure of research reactors continues inexorably; for example in the 
UK there is now only one research reactor left (University of London). The reactor at 
Seibersdorf, on the doorstep of the IAEA, is now to be closed1, and so on. 

Another important factor is development and change in scientific research and changes in 
staffing, training and education. While NAA and other nuclear analytical methods (NAMs) 
have unique advantages, there have been great advances in competing techniques, which often 
now surpass NAA in terms of sensitivity and speed. NAA itself is a mature technique, where 
dramatic improvements are not to be expected. The study and practice of radiochemistry is 
less popular; fewer universities and institutions now offer education and training in this 
discipline, while the age structure of its practitioners is unfavourable, many experienced 
radiochemists now approaching retirement age. 

                                                 
1 The Austria reactor at Seibersdorf has been shut down in 1999 (note Ed.). 
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In the context of the above facts I therefore feel it would be unrealistic to close our eyes to the 
politico-social climate and merely evaluate promising trends in NAA, identify areas of growth 
and development, and suggest some scientific guidelines to try to enhance the utilization of 
research reactors for NAA, though some suggestions in this respect will be given below.  

This paper therefore puts forward the proposal that a more versatile, interdisciplinary 
approach is required, operating in the context of larger national or regional nuclear analytical 
centres. Such centres should be more cost-effective, have a greater utilization of facilities, be 
more goal-oriented, run educational and training courses, pool knowledge from and operate in 
collaboration with other relevant complementary non-nuclear methods, and be concerned with 
both pure and applied research and development. Such centres are much more likely to attract 
funding from both national and international bodies. We will return to this theme in the last 
section. 

2. PROMISING TRENDS IN NAA 
 
2.1. Instrumental NAA (INAA) 

INAA continues to grow in importance and in the range of its capabilities and accuracy. This 
has been facilitated by improvements in both hardware and software. In terms of hardware we 
can enumerate bigger, higher efficiency detectors, increased usage of well-type detectors 
(with more attention given to the problems of geometry calibration, and coincidence 
corrections [1]), the advantages of anti-coincidence arrangements for gamma-spectrometry 
and improvements in the data-handling capacity of the electronics, e.g. “loss-free” systems. 
Software is becoming more powerful and in view of the dangers of using it simply as a 
“black-box”, there has also been a growing awareness of the need to validate results and inter-
compare different software [2] programs, evaluating their strengths and weaknesses. 

The use of ko-INAA continues to spread and extensive experience with this technique has 
revealed few problems and good accuracy. The present status of the technique and typical 
applications are summarised in the Proceedings of the 2nd Workshop on ko-INAA, held in 
Ljubljana [3]. Heydorn and Damsgaard [4] also showed how ko-factors can be used to validate 
and check relative standards in NAA. Recently, Bossus and Van Sluijs reviewed the range of 
applications for ko-INAA in a Dutch chemicals and materials group [5]. The major 
applications are for panoramic analyses of solids and organic liquids, analysis of catalysts 
(solids and slurries), the analysis of industrial slurries, the determination of halogens, analysis 
of samples for which no other in-house technique has yet been calibrated, and finally as a 
check or referee method for a second opinion. 

2.2. Quality assurance/Quality control 

The role of NAA as a reference method (or referee method) is one of its more important uses 
and also cost-effective (inaccurate analyses are the most expensive). NAA continues to be a or 
even the major technique in certification of reference materials (RMs), and is important as a 
totally independently based method in certification and intercomparison studies. Its non-
destructive and multi-element nature is particularly valuable in the assessment of possible 
inhomogeneity in candidate RMs [6]. 

One of the features of NAA which is unique and under-utilized in the above field of QA/QC 
is its ability to validate or cross-check the data it produces by performing independent 
analysis by an alternative route, either using different isotopic nuclear reactions and/or the use 
of INAA and RNAA. This ability to check its own data we have termed the self-validation 



  85 

principle [6, 7]. Recently we developed this approach further with examples, and published a 
table giving alternative isotopic reactions of analytical use for over 30 elements [8]. 

Another aspect of QC in NAA is the growing awareness of the need to evaluate and check 
potential errors, the importance of performing an uncertainty budget and determining whether 
experimental variations fall within the limits set by the uncertainty budget. In this way the 
presence of unaccounted or unknown errors can be detected, and the analytical procedure be 
brought into a state of statistical control [9, 10]. Recommendations for improvement of the 
accuracy of NAA in the analysis of biological samples produced by an earlier IAEA AGM in 
1984 are still relevant and worth studying [11]. 

2.3. Radiochemical NAA 

The general trend is towards less use of RNAA, which is used generally for ultratrace analysis 
(e.g. As, Cr, Mn, Ni, Se, V) and for some important elements where limits of detection by 
INAA are often inadequate, especially in biological materials (e.g. Cu, Cd, I). In separations 
the tendency is to more simplicity and determination of individual chemical yields for each 
separation (if one is taking the trouble to perform RNAA the accuracy should be ensured by 
recovery measurements). Radioisotopic tracers are usually the easiest method of measuring 
such chemical yields; the desirable properties of such tracers and examples of their use have 
been considered [12, 7]. From an extensive literature we can select some examples of 
ultratrace analysis by RNAA for vanadium [13], thallium [14] and nickel [15]. The use of 
RNAA for determination of some important radionuclides is mentioned in section 3.1. 

In the case of multi-element RNAA, ko-factors can be combined with chemical yields to 
perform ko-RNAA independently of the relative standard method. 

2.4. Speciation analysis 

The use of NAA after preseparation of particular chemical forms before irradiation, 
sometimes termed “chemical NAA” or “molecular NAA” is growing, and promotes the 
utilization of NAA in the increasingly important field of speciation. Since facilities, 
techniques, apparatus and reagents have all been greatly improved with respect to 
contamination, preseparations can often be carried out without prejudicing the results. Some 
of the papers presented at this meeting describe such applications of NAA in speciation 
analysis (Chatt [16], Chai [17]). In our group we began with speciation analysis of Cr(III) and 
Cr(VI) in waters [18], separation of metallothionein proteins from rat brain with RNAA for 
mercury metabolism [19], and speciation of arsenic in biological samples using ion exchange 
followed by INAA of individual fractions [20]. 

However, it seems evident that NAA can only be properly applicable in speciation work when 
the detection of the element is particularly favourable (or particularly difficult by other 
methods). NAA, compared to other chromatographic techniques which can be coupled on-line 
to an element-specific detector (e.g. ICP-MS), is slow and expensive, and crucially, basically 
off-line. This means the course of separation cannot be followed while it is in progress. Hence 
applications of NAA in speciation will be limited. 
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3. INCREASED UTILIZATION OF HUMAN POTENTIAL AND SKILLS — 
INTERDISCIPLINARY STUDIES 

 
3.1. General 

In order to enhance research reactor utilization particularly for NAA, it seems to me that 
increasingly interdisciplinary studies and applied and goal-oriented projects need to be 
undertaken on a larger scale. Activation analysts, especially those with a chemical 
background, have an excellent basis for co-operating in and leading such studies. In many 
centres such is already the case, particularly smaller groups were over-specialisation cannot 
be afforded and staff are of necessity versatile. At our reactor in Ljubljana, since the group is 
small and our institute the only one in this field in the country, we have of necessity become 
engaged in a very wide range of projects, co-operating with groups from many other 
institutions. (The nature of our funding on the basis of competition for projects also ensures 
that we have to seek funds over a wider sphere of interest). Such a situation is becoming 
common everywhere, except perhaps in larger state-financed organisations. Though many of 
the possible fields to which activation analysts can usefully contribute are known, it is worth 
listing some of these from our experience and that of others. 

3.2. Radioecology 

Since Chernobyl almost all groups with the ability to measure radioactivity, at least by 
gamma spectrometry, have become involved in radioecological studies: Activation analysts 
are in an advantageous position as far as radiometry is concerned with respect to traditional 
radioecologists, usually having a greater familiarity with the basis of radioactive 
measurements, and a better appreciation of problems of accuracy and precision, calibration 
and validation. In addition to facility in handling radioactivity, the preparation and use of 
tracers, and appreciation of some pitfalls in their use makes their contribution to field 
experiments in radioecology valuable. 

With relatively little effort, activation analysts can acquire a good working knowledge of 
other measurement techniques such as beta counting, including liquid scintillation, and of 
alpha spectrometry. Radiochemically trained activation analysts or radiochemists will already 
be at home in these areas and can contribute to better or more rapid methods of measuring 
radioactivity (radiometric methods). 

Some very useful combinations of NAA and radioecology are possible. For example, we 
showed recently [21] that traditional alpha spectrometry of the radioisotopes of uranium and 
thorium (used in many fields involving dating, disequilibrium studies, geological and marine 
tracing, radiology, etc.) can be advantageously combined with INAA of U and Th (as 238U 
and 232Th) so as to allow those two nuclides to function as internal standards. This then means 
that in alpha spectrometry the chemical yields and counting efficiency are not required, nor is 
there any need to add external isotopic tracers such as 232U and 229Th. Alternatively, if INAA 
is combined with traditional tracer-added alpha-spectrometry, an independent data set can be 
obtained for quality control purposes. 

Other applications include using INAA to determine stable elements of interest in 
radioecology, e.g. Cs (the specific activity of 134, 137Cs is often important). Other similar 
elements e.g. Na, K, Rb are also often useful. INAA can be used with advantage to determine 
Sc, Al and Ti which are considered to be biologically inert elements and their presence 
indicative of passive physicochemical uptake, i.e. contamination of plants by soil and dust (in 



  87 

determination of transfer factors), or adsorption of colloids and particulates in the case of Sc 
found in algae [22]. 

Another underused application of NAA is in the determination of a number of radionuclides. 
The most important of these are 235U, 238U, 232Th, 230Th, 237Np, 231Pa, 129I and 99Tc; this topic 
was recently reviewed and illustrated by us elsewhere [23]. 

For some of these nuclides NAA is an excellent method; for others it represents a useful 
alternative where it is necessary to have data by an independent method for certification or 
intercomparison studies. 

3.3. Pollution studies (air, water, soil and biomonitoring) 

This topic is so wide and so much has been published in the last decade that we can scarcely 
attempt a review here. Most activation analysts are already engaged in such studies so that 
they need little emphasis. 

Such studies are, it should be emphasised, best performed in the context of wider 
interdisciplinary projects in which various types of data are combined, such as meteorological 
data, data on toxicity/essentiality, medical and epidemiological data, combined with data 
handling and statistical tools. 

3.4. Other studies 

The IAEA itself has for a number of years intensively promoted the use of nuclear methods, 
particularly NAA, in the fields listed above in 3.2 and in many other studies such as 
occupational health and exposure, studies of nutrition and pollutants/contaminants, medical 
applications, tracer-aided studies in the environment, biology, etc. 

Listing in detail the role of NAA in these studies is not the purpose of this contribution; in my 
view it is the framework and strategy within which NAA operates and the interdisciplinary 
context that needs to be altered, as described elsewhere in this paper. 

4. COLLABORATION WITH OTHER NUCLEAR-BASED TECHNIQUES 

Nuclear analytical methods (NAMs) have a number of common features and common 
problems. This topic was recently reviewed by De Goeij [24]. As well as accelerator-based 
techniques such as PIXE, Rutherford back-scattering (RBS) and other ion beam analytical 
(IBA) techniques, elastic recoil detection analysis (ERDA), and nuclear-reaction analysis 
(NRA), important are other microanalytical methods such as scanning transmission ion 
microscopy (STIM) and secondary electron microscopy (SEM). The range of applications is 
similar to those of NAA, except that emphasis is largely on microanalysis not bulk analysis. 
This, together with the elements which can be determined (generally light elements) makes 
these NAMs highly complementary with NAA. 

As well as the above mentioned NAMs, there are those techniques based on neutrons (suited 
to the fluxes and beams available in research reactors), many of which are related to NAA. 
These include neutron radiography, neutron induced autoradiography using solid-state track 
detectors (SS-NTDs), neutron dosimetry and depth profiling. Developments in new detectors, 
imaging techniques and applications are rapid. For many of these techniques and applications 
relatively small equipment and running costs are characteristic. These topics were reviewed at 
an IAEA Technical Committee Meeting in Vienna in 1993 [25], another similar meeting in 
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Lisbon in 1997 [26], and at the European Conferences on Non-Destructive testing (most 
recently in Copenhagen 26–29 May, 1998). 

The group for reactor physics at our reactor centre in Ljubljana is active in all of these fields. 
A review of activities in this area, written in 1993, was given by Rant et al [27]. To mention a 
few more recent examples, improved selective radiography with NTDs using a fully 
automatic image analysis system allows selective imaging of 10B distribution in tissue 
samples [28] (of great value in improving boron neutron capture therapy), or depth profiling 
of 10B in silicon [29]. In neutron radiography, direct near-real time neutron imaging detectors 
such as imaging plate neutron detectors (IP-ND) or charge-coupled device cameras, in 
combination with Gd-based scintillating screens, enable recording of time frozen images of 
concentration profiles of moisture (or other hydrogenous liquids) in porous materials. This 
allows e.g. the efficiency of hydrophobic treatments in the building industry to be tested. 

However, once again it should be emphasised that it is the co-operation of NAMs (including 
NAA) that is important for the survival of reactors (and other installations). Unfortunately, 
little real collaboration between NAA and other NAMs in goal-oriented research of an applied 
character seems to take place in practice. The meetings and journals of publication are also 
not the same, so that in spite of our common interests, we need to work at bringing NAA 
practitioners and others NAM users together. 

Another area where little co-operation exists, in spite of many common interests, is that 
between radioanalysts and those who use radionuclides for diagnosis or therapy in medicine. 

5. COLLABORATION WITH OTHER NON-NUCLEAR ANALYTICAL TECHNIQUES 

Evidently, in all collaborative, interdisciplinary research studies and more applied projects a 
range of analytical techniques should be available to complement and enrich NAMs. This 
should include atomic absorption, fluorescence and emission spectroscopy, HPLC and GC 
systems with appropriate detectors, mass spectrometers for stable isotope analysis and ICP-
MS. More specialised techniques such as those for protein separations, amino acid analysis, 
enzymatic procedures, etc. may be required in more biochemically oriented projects. 

Particularly valuable are isotopically based techniques involving mass spectrometry. 
Extremely powerful and sensitive methods combining accelerators and mass analysers have 
developed in the last decade. Accelerator mass spectrometry (AMS) allows determination of 
104–106 atoms in favourable cases. Determination of plutonium [30], application of 26Al to 
tracer studies in humans [31, 32, 33], studies of 10Be, 26Al and 34Cl in the environment and 
hydrology [34], as well as the better known high sensitivity 14C analysis are all rapidly 
developing fields, which often have affinities or a close relationship to radioisotopic and 
radiometric techniques, and other NAMs. 

6. SYNTHESIS AND STRATEGY 

Although in sections 2 and 3 we identified some trends in NAA and areas where reserves 
exist which could be better exploited by NAA techniques, and by practitioners of NAA, as 
suggested by the thesis of the introductory section, in our view this will not basically 
influence the utilization of research reactors for NAA; a more radical integrated approach is 
required. One way to ensure the survival of research reactors where NAA is practised is the 
creation of regional nuclear analytical centres, where a range of NAMs, supplemented by non-
nuclear analytical methods (especially isotopically based ones) could be practised, coupled to 
training and teaching in these disciplines to ensure a future supply of qualified and motivated 
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scientists. Evidently, the IAEA should play a leading role in the establishment and policies of 
such centres. 

It seems to me that the establishment of such centres is a sure way to maintain the existence of 
NAMs and do useful research. It should also be remembered that the more isolated and 
fragmented are the various sectors of analytical science, the weaker their importance and 
bargaining power; the more interdisciplinary and united we are, the greater our chance of 
funding and of influencing policy! 

How (and how many) such centres should be established, their staffing, particularly their 
organisation and structure, and their ability to perform interdisciplinary research effectively 
seem to be the issues which should be addressed at this meeting in the discussion sessions, 
and brought forward in the recommendations. One other possibility is to establish networks of 
co-operating specialists, linked in projects (as is the case presently for some large EU funded 
collaborations e.g. COST), but not necessarily structurally or organisationally united. 
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ANNEX 
 

The J. Stefan Institute (IJS), Ljubljana 
 
The Laboratory for Radiochemistry of the Department of Environmental Sciences, IJS, has 
available a TRIGA MK II 250 kW reactor (upgradeable) with pulsing capability. The reactor 
was completely renewed in 1993. Also recently opened at the Reactor centre is the 
Microanalytical Centre, equipped with a new tandem accelerator, dedicated to PIXE, RBS, 
IBA, STIM, etc. 

The Laboratory for Radiochemistry (which was completely renovated and re-equipped in 
1997) has since its earliest days been oriented to applications of INAA and RNAA in 
environmental studies, the life sciences and nutrition, biomonitoring, studies of reference 
materials, as well as radioecology and applications of tracer methods. 

Because of the small size of the country (2 million) and the fact that IJS is the only institution 
engaged in radioanalytical methods, the projects and research interests of the group are wide-
ranging and interdisciplinary; collaboration with other institutions and research groups is 
encouraged. Since the Laboratory now operates within the framework of the Department of 
Environmental Sciences, multitechnique, goal-oriented interdisciplinary projects are 
facilitated. 

An important part of the activities of the Laboratory is education and research training at 
B.Sc., M.Sc., Ph.D. and post-doctoral levels, in co-operation with the University of Ljubljana. 
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INDUSTRIAL APPLICATIONS OF NEUTRON ACTIVATION ANALYSIS 
 
T.Z. Hossain 
AMD, Inc., 
Austin, Texas, United States of America 
 
Abstract. Neutron activation analysis has been widely used in the industry and over the years played a key role 
in the development of manufacturing process as well as monitoring of the process flow. In this context NAA has 
been utilized both in R &D, and in the factory as a flexible analytical tool. It has been used successfully in 
numerous industries including broad categories such as Chemical, Pharmaceutical, Mining, Photographic, Oil 
and Gas, Automobile, Defense, Semiconductor and Electronic industries. Dow Chemical owns and operates a 
research reactor for analytical measurements of samples generated in both R & D, and manufacturing area in its 
plant in Midland, Michigan. Although most industries do not have reactors on their campus but use an off site 
reactor regularly, and often have in-house neutron sources such as a 252Cf used primarily for NAA. In most 
industrial materials analysis laboratory NAA is part of a number of analytical techniques such as ICP-MS, AA, 
SIMS, FTIR, XRF, TXRF etc. Analysis of complex industrial samples may require data from each of these 
methods to provide a clear picture of the materials issues involved. With the improvement of classical analytical 
techniques, and the introduction of new techniques e.g. TXRF the role of NAA continues to be a key bench mark 
technique that provides accurate and reliable data. The strength of the NAA in bulk analysis is balanced by its 
weakness in providing surface sensitive or spatially resolved analysis as is required by many applications. 

1. INTRODUCTION 

In the following pages first hand experiences of using NAA as a part of a larger analytical 
laboratory consisting of many other methods are described. The applications given below 
were in the Photographic, Chemical, and Semiconductor manufacturing industries. In each 
case NAA was a critical complementary technique needed for successful resolution of 
manufacturing problems. 

2. APPLICATIONS IN PHOTOGRAPHIC INDUSTRY 

2.1. Precise doping of silver halide crystals 

A very important consideration in the manufacturing of the photographic films is the precise 
doping of the silver halide crystals with ultra low level impurities such as Ir, Rh, and Au. 
Typical levels are in the low ppb range, however the performance of the films such as speed 
or sharpness depend on maintaining a precise doping level in the high volume manufacturing. 
Analysis of these dopants was found to be best performed by NAA with a pre-irradiation 
separation chemistry. In a comparison of many techniques such as AA, ICP-MS, XRF, and 
others, NAA provided the most repeatable and reliable data over a long period of time (> 2 
years). The high thermal neutron cross sections of these dopants made NAA a very sensitive 
technique, and analysis at ppb level could be performed with great precision. The method was 
susceptible to very few extraneous factors, and immune from a number of background related 
abnormalities. Although a pre-irradiation separation was necessary to avoid activating long 
lived Ag or intense halide radioactivities the final result of measuring Ir count rates proved to 
be highly sensitive, and precise. A shift in the manufacturing process due to dopant variation 
could be monitored, and reliable non-varying photographic films can be produced over a 
product life cycle. In this case NAA turned out to be a vital technique for the successful 
manufacturing of a high volume product sold through out the world. 

A related monitoring application, although did not require the use of the reactor is worth 
mentioning. Chemically most photographic films are mixed halides e.g. AgBrCl, AgBrI etc. 
The mole ratio of the halides determines the sensitivity of the color films. Using an in-house 
252Cf neutron source the halide ratio in these mixed halides can be readily, and reliably 
measured. Conventional techniques requiring dissolution of these halides resulted in very 
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poor quality data not suitable for controlling a manufacturing process. Yet NAA provides 
such an easy and elegant analysis of this key industrial process proving to be an excellent 
application of the technique in the industry. 

2.2. Impurities in Gelatin 

Gelatin used as the emulsion in which Ag halides are dispersed is required to be high purity. 
Presence of trace impurities such as Hg, Se can be highly inhibitive to the photoactive 
processes and latent image formation. A reactor based NAA of the gelatin was found to 
provide superior quality trace analytical data when compared with other techniques such as 
hydride generation, and cold vapor atomic absorption. 

3. APPLICATIONS IN THE CHEMICAL INDUSTRY 
 
3.1. Iodine in polymers 

Bulk chemical manufacturing often require final product to have low level impurities. For 
example a bulk hydrocarbon polymer may not contain any halogen impurities. In one such 
application where the final polymer used in the automobile industry needed to be essentially 
free of iodine. Iodine being volatile was difficult to analyze by conventional dissolution 
methods at low level. The short half life and the good thermal neutron cross section made the 
detection of iodine by NAA in polymers a sensitive, and reliable analysis. The level of iodine 
in this high volume polymer production was monitored by NAA over a long period time. 
Samples from the production line were collected, and periodically sent to off site reactor for 
accurate analysis of iodine. Using this logistic a control chart was made for the process, and 
maintained for the manufacturing of the polymer. 

3.2. Metallic catalysts remainders in high volume polymers 

A second example in this industry also involves production of high volume polymers e.g. 
polyester. Often time metallic catalysts are used in the manufacturing process, and are not 
desirable to be present as impurities in the final product. A Mn or Sb contamination can be 
easily picked up in the polyester or PET (polyethylene terephthalate) manufacturing. These 
impurities can be readily detected by NAA at a low ppm level, Methods such as XRF can be 
used for the metallic impurities analysis for thin polymer films. However XRF sensitivity 
often is not good enough to use in the low level monitoring applications. Catalytic impurities 
such as Sb being a toxic metal need to be controlled, particularly when the product (e.g. PET) 
is used in food related applications such as the beverage containers. NAA is ideal for 
monitoring the Sb levels resulting from the use of the Sb oxide catalyst in the manufacture of 
PET polymers. 

3.3. Benchmarking of other methods 

Use of NAA as a bench mark technique for calibration of other methods is widely practiced. 
In many suitable applications NAA data is highly quantitative. Since it is free from cross 
contamination from reagents or is not easily affected by absorption (both neutrons, and 
gamma rays are penetrating radiation) the analysis is robust and reliable. This makes NAA 
very suitable for bench marking conventional methods such as XRF, AA, ICP, etc. The role 
of bench marking is not limited to chemical industry alone. NAA bench marking has been 
used in other industries as well. 
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4. SEMICONDUCTOR INDUSTRY APPLICATIONS 

4.1. Trace impurities in high purity Si 

In the production of high purity Si needed for VLSI manufacturing NAA was very effective 
for the whole semiconductor industry. Trace impurities in starting Si is required to be below 
sub ppb level. Monitoring of bulk impurities in Si introduced during the crystal growth 
process is best done by using NAA. The matrix is very favorable since the half life of the 
radioactive Si is short (i.e. 31Si, t1/2 2.6 hours), and the elements of interest (transition metals) 
have long half lives a very high sensitivity analysis can be obtained. Detection limits for some 
elements such as Au (highly undesirable in semiconductor Si) can be in the range of few parts 
per trillion. Bulk analysis by NAA has established the quality of Si used in the semiconductor 
manufacturing today. 

A relatively new technique, Total reflection X-ray Fluorescence (TRXRF) has been widely 
used for trace level monitoring of surface impurities in the Si wafers. TRXRF cannot measure 
bulk impurities since it is designed as a surface technique. However the detection levels are in 
the range of –2 . 109 atoms.cm-2. Advantages of the TRXRF technique is the rapid turnaround 
time, and that the instrument can be placed inside the fabrication floor for automated analysis 
by semiskilled technician. 

4.2. Contamination control in VLSI manufacturing 

Cross contamination which is a very big issue in VLSI manufacturing can be monitored 
effectively by NAA. The key for this type of analysis is to have the low detection limit since 
semiconductor devices are susceptible to small contamination. Often times samples are clean 
room quality rags or wipes with irregular shape so that only a bulk analysis done non-
destructively is reliable. Most other techniques suffer from sample preparation for this low 
level analysis. The elements of interest in this case are Co (cobalt silicide process), Cu 
(copper metallization), etc. NAA for these analysis can provide higher quality data compared 
to ICP-MS. However the turnaround time for ICP-MS is much better, and prove to be more 
important. 

4.3. Bulk analysis of quartz 

Bulk analysis of the quartz used in the furnace for Si wafer processing is another example 
where NAA is highly suitable, and is routinely done either by the chip manufacturers or their 
quartz supplier. High sensitivity and low detection limits are obtained in this matrix with little 
sample preparation. The competing techniques of ICP-MS and TRXRF are not as convenient, 
particularly TRXRF yields only surface concentrations. Use of high purity quartz is essential 
in the high volume chip manufacturing where low level transition metal contamination can be 
a disaster and lead to non functional dies. Other materials that need bulk analysis in 
semiconductor industry include SiC (used in vertical furnaces), various plastic packaging 
materials for U, and Th (precursors of alpha particle emitters), aluminium metal (used as 
interconnect), and thin films of silicon dioxides, Ti, TiN, W etc. However for thin film cases 
alternate methods such as the TRXRF provide rapid and reliable analysis, and is often the 
method of choice. 

4.4. Use of other nuclear analytical methods 

It is important to note a few important analysis for the semiconductor industry that are done 
using a reactor neutron source but are not neutron activation analysis by definition. These are 
neutron depth profiling (NDP), and prompt gamma activation analysis (PGNAA). Both of 
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these methods are closely related to NAA, and have similar materials analysis considerations. 
NDP has been uniquely used for depth profiling boron in thin CVD (Chemical Vapor 
Deposition) silicon oxide films (- �m) such as BSG (borosilicate glass), BPSG 
(borophosphosilicate glass), and BPTEOS (borophospho tetraethyl ortho silicate) films. 
Analysis require a neutron beam, and data is collected while the samples are under neutron 
irradiation. NDP can depth profile a few micrometer thick films, and is particularly suitable 
for the semiconductor industry since devices are manufactured as thin films on Si wafers. The 
boron depth profiling is also widely done using SIMS (secondary ion mass spectrometry). 
However NDP can provide highly quantitative data, and accurate profile free of interfacial 
yield problems that plague the SIMS methodology. Anytime a depth profile across an 
interface such as the SiO2/Si is needed NDP has an advantage since there is no direct effect of 
the interface in the neutron irradiation of the boron. SIMS on the other hand has different 
sputtering yield across the interface and results in a profile that need to be carefully 
interpreted. The limitations of NDP is also its strength, i.e. only a few elements can be 
analyzed by this technique e.g. B, N, O (labeled with 17O isotope). 

The second related method, PGNAA is also very important in the semiconductor industry for 
measuring bulk hydrogen content of thin films produced in CVD process. Many CVD process 
use organo metallic gases such as TEOS or silane for silicon oxide films, TDNMT (tetrakis 
dimethyl amine Titanate) for CVD TiN films etc. The final thin films contain hydrogen often 
at a level of up to 40–50 atomic%. Hydrogen contents of these films can have significant 
effect on the device performance (e.g. hot carrier injection) and therefore need to be taken into 
account in a manufacturing process. PGNAA can measure the bulk hydrogen in CVD films 
quantitatively, and provide a bench mark for many of these processes. Other techniques such 
as FTIR and nuclear reaction analysis have been used to obtain chemical nature of hydrogen, 
and the distribution of hydrogen respectively. These measurements when used in conjunction 
with PGNAA provide the complete analysis of hydrogen for comprehensive understanding of 
the CVD thin films. 

5. SUMMARY AND CONCLUSIONS 

NAA plays a complementary role in materials analysis in an industrial analytical laboratory. 
There are applications where it is highly desirable, and may play the dominant role as the 
method of choice e.g. bulk analysis of Si. The advantages of NAA are still the minimum 
sample preparation, and ultra high sensitivity while turnaround time, and lack of spatial 
resolution is a significant limitations. 

The continued use of NAA in industries critically depend on having NAA trained 
professionals in the industrial organizations. It has been used most widely and innovatively 
when a NAA professional was part of the materials analysis laboratory. Interaction of the 
NAA professional at the research reactor with the industrial analytical laboratories is also very 
important for enhanced use of the technique. This is not quite as effective as having someone 
inside the industrial analytical laboratory however. Therefore training of young professionals 
in NAA, and other nuclear analytical methods is a key for the increasing use of the research 
reactors for materials analysis needs. 
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