TH/P3-22

Selfconsistent RF Driven and Bootstrap Currents
Y. Peysson 1), J. Decker 2), A. Bers 2), A. K. Ram 2)

1) Association Euratom — CEA, CEA/DSM/DRFC
CEA-Cadarache, 13108 Baul-lez-Durance (France)

2) Plasma Science and Fusion Center
Massachusetts Institute of Technology, Cambridge, MA 02139 U.S.A.

E-mail contact of main author: yves.peysson@cea.fr

Abstract: In orderto achievesteady-statdigh performanceregimesin tokamaks,it is importantto sustainand
controlthe pressur@andmagneticshearprofilesin high bootstrapcurrentplasmas RF wavescanbe usedto achieve
sucha goal. Thenthe bootstrapcurrentfractionmustbe calculatedselfconsistentlywith RF inducedcurrents taking
into accountpossiblesynergisticeffects resulting from the distortion of the electronvelocity-spacedistribution.
Resultsobtainedvith anew3-D codethat solvesthe electrondrift kinetic equationto studythe synergisticeffects
arepresentedWhile synergismbetweerbootstrapandLH-driven currentsremainsmodest,it may reachup to 30-
40%for the caseof EC currentdrive providedthe plasmaparameterareproperlychosen.

1. Introduction

In advancedscenarios,radio frequency(RF) inducedcurrents have to be calculated self-
consistentlywith thebootstap current thustakinginto accounipossiblesynergistieffectsresulting
from the momentumspacedistortion of the electrondistribution functionf,. Since RF wavescan
causehedistribution of electronsto becomenon-Maxwellian,the associatecchangesn parallel
diffusion of momentumbetweentrappedand passingparticles can be expectedto modify the
bootstrapcurrentfraction; conversely the bootstrapcurrentdistribution function can enhancethe
currendrivenby RF waves.

2. Drift kinetic formulation

We follow thedevelopmenin [1] for finding the electronmomentumdistribution functionin the
selfconsistentinteraction of RF currentdrive and bootstrapcurrent. This approachsolves the
electrondrift kinetic equation
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where C(f) is the relativistic Fokker-Planckcollision and Q(f) is the quasilinearRF diffusion
operatorHere,(r,0) aretheradial andpoloidal positions,v, is the velocity alongthe poloidal field
linesandv,, is thedrift velocity acrossthe field lines. An approximateformulation, basedon an
expansionn the small paramete® = 1, /1, , whereTt, , is theelectron'stransitor bouncetime, and
1,, IS atypicaltime for theelectronradial drift dueto magneticfield gradientandcurvature,is used
to determinetheelectrondistributionfunctionin thelow collisionality regime.In thelimit 6 << 1,

it canbeshownthatf maybeexpressedsf=f, + of, = f, + f + g, where f is theperturbation
dueto radal drift andgradientsandg is theresponsef theplasmadueto collisionsand RF fields.
Thefirst ordertermf, is determinedby solving the steady-state8-D relativistic bounce-averaged
Fokker-Planclequation
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{c(f)} +{a(f)} =0

fis given by f= —&% where Q, is the poloidal gyrofrequencyand v, the particle velocity

alongthemagnetidield line, andg is determinedrom

{c(a} +{ g} ={c(F)} -{(f)}

where{ } denoteshebounce-averagingperation.
3. Numerical implementation

The numericalsolution of the setof equationshas beencarried out in the small inverse
aspectratiolimit € = r/R, << 1 for circular cross-sectiorplasmas,using the 3-D Fokker-Planck
solverDKE [2,3]. Thisfully implicit code,writtenin MatLalf matrix languagejs usedto studythe
interactionbetweerthebootstrapcurrent(BC) andthelower hybrid driven current(LHCD), the BC
andthe electroncyclotrondriven current(ECCD),andthe the BC andthe Ohkawadriven current
(OKCD) [4].

This code has been benchmarkedagainstneoclassial resistivity calculations [5] and
bootstrapcurrentcalculationg6,7,8] (Fig. 1). A departurdrom thecalculationsof Ref. [8] arisesat
larger/a becausg¢heconditione << 1 is not well satisfied.Theresultsof the codehavealsobeen
comparedvith previoussimulationsapplyingto thecaseof arunawaydischargelt hasbeenshown
thatthepresencef atail of fastelectronsacceleratethy the Ohmicelectricfield coud significantly
improvethebootstragcurrent9]. As shownin theFig. 2, similar resultsareobtainedwith our code.
Theslightdifferencemayresultsfrom thefactthatthedynamicf the electronsis describedn the
whole momentunspaceratheratthetrapped/passingoundaryonly, asdonein [9].
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Fig. 1. Bootstrap current comparison between the Fig. 2. Simulationof a run-away dischargeon
code and theoretical predictions. The relative erro the RTP tokamak[9]. The bootstrap current is
for the electron component with the law given by | Increasedyy 40%at r/a = 0.3. The methodused
[8] is presented in the insert, as well as the plasm: With RELAXcode[9] that singles out the term

ey . : ; . contributing to the boostrap current at the
collisionnality [8]. Simulations are done for a typic trapped/passingpoundarygivessimilar resultsto

TORE SUPRA tokamak discharge the newapproach[4]



The code has also beensuccessfullypenchmarkedagainstother codesfor LHCD and
ECCDcalculationsnot including the interactionwith the bootstrapcurrent.The radial transportof
thefastelectronsand the role of the toroidal magneticripple in fast electronlossescan also be
investigated10].

4. Self-consistentcurrent calculations

The codeDKE is usedto computethe following flux surfaceaveragedquantities:the RF
currentdensity<J,. > andthedensityof powerabsorbedP,> in the absenc®f bootstrapcurrent;
thebootstrapcurrentdensity<J,> in theabsencef RF; theself-consisten{RF and Bootstrap total
currentdensity<J> andtotal densityof powerabsorbedP>. The synergisticcurrentdensityis
givenby <J> = <J> - (<Jp> + <Jg>),andthefigure of merit for the currentdrive is takenasn
=[(<J> - <Jz>)/<P>]. Thisis comparedwith n,- = <J> /<Py>. Theresultsareillustratedfor
high performancescenariosn Alcator C-MOD [11]. In our studiestheradial positionis choseno
ber/a=0.7 wherethepeakRF currentdrive is expectedAt thislocation,densityandtemperatureare
1.8x10"° m*® and2.1keV, respectivelyWe thenfind thatJ,=3.57 MA.n.

4.1 Lower Hybrid current drive (LHCD)

The LH powerspectrumis assumedto be constantin k, betweentwo limits fixed by

accessibilityandby linear Landauwdampingtypically D 3.5). ThenormalizedLH quasilinear
Te

diffusion coefficientis choserto beD;" =1.0v _p?, which correspondso anincomingLH power

P, of 2 MW. A parametricstudy of the synergismshowsthatthe synergisticcurrentincreases
linearly with the temperaturgyradientsbut is independentf densitygradients.This confirmsthe

analyticalresultsobtainedin theLorentzlimit Z, >> 1[1] :
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In Fig. 3 weplot contoursof thesynergistidractionof the current<J.>/<J,,,>, andof thefigure of

merit n), for varioustemperatureand densitygradients(T, [ (1— (r /a)z)aT ,n, D(l— (r /a)z)a”). If

thetemperaturgradientweremadewice assteepthebootstragurrentwouldincreaseby 80% and
thesynergistidractionwould riseaccordinglyfrom 5% to 12%of theLH drivencurrent.
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Fig.3. Synergistic fraction and figure of merit for the LH current drive problem at r/a = 0.7 (C-MOD)



Correspondinglythereis an8% increasan the figure of merit.
4.2 Electron Cyclotron current drive (ECCD, OKCD)

ECCD at secondharmonicwith X-Mode excitationis considered,assuminga Gaussian
power spectrumcenteredaroundN,, with a width AN, = 0.02 The maximum value of the EC

diffusion coefficient for an incoming powerP.. of 10 MW is D{°=0.14v_pZ. The study is
restrictedto absorptioron thelow-field side(LFS) only. ECCDfar off axis(r/a = 0.7) on the LFS
is knownto leadto poor CD efficiency dueto the Ohkawaeffect generatedy a largenumberof
trappecklectronsHowever,it is possibleto usethe Ohkawacurrentin a positive way, by launching
waveswith N,, < 0, andadjustingthe wave parameterso thatthe EC diffusion regionin velocity
spaces locatedjust below the trapped-passingoundary Electronsarethen mostly diffused into
the trappedregion and the Ohkawaeffect becomesdominant. This is referredas the Ohkawa
methodfor ECCD, andherenotedas OKCD. Thewave parameterdN, and 2w_J/w determinethe
locationof the EC diffusion regionin momentumspaceand can be varied so as to optimize the
currentdriven by eitherECCD (N,, = 0.28,2w./w = 0.97) or OKCD (N,, = -0.30, 2w Jw =
0.98) The self-consistnt calculation of ECCD with BC is performedusing these optimized
parameterandtheresultsarepresentedn Table 1. A muchlargercurrentdensityis obtainedfor
OKCD thanfor ECCD.In addition,thefigure of meritis better,thusmakingOKCD moreattiactive
thanECCDfor off-axis CD ontheLFS. A synergismis foundbothfor ECCD andfor OKCD, but
the synergistidraction of the currentis muchlargerfor ECCD (28%) thanfor OKCD (5%). In
contrasto LHCD, synergisnis alsoobtainedn thefigure of meit (25% increasen n for ECCD,
and5%in OKCD). The physicalmechanisnof the synergismbetweenECCD or OKCD andthe

bootstragurrentcanbevisualizedin a2-D contourplot of theperturbedlistributiondf, = f + g,
generatedy the radial drifts, asdisplayedn Fig. 4. In the caseof ECCD, the synergismcan be
simplyinterpretedas the Fisch-Boozegeffect on the « bootstrap >distribution. The Ohkawaeffect
on &f, is howeverdifferentfrom f, becauséf, is mostly negativefor p, < 0. Indeed,the synergism
betweenOKCD andbootstrapcurrentis a competitionbetweena negativeeffect of EC induced
electrontrappingwheredf, <0 andp, < 0, anda positive effect duetheasymmetryin f, , which
leadsto anincreasan &f, whaep, > 0.

ECCD EC EC + Syn. OKCD OK OK + Syn.

<J> (MA.n) | 0.49 0.62 <J> (MA.M7) | 12.37 12.96

<P> (MW.m% | 22.1 22.6 <P> (MW.m?%) | 278.8 276.3
n(AmW) | 0.022 0.028 n (Am/W) | 0.044 0.047

Table 1: ECCD and OKCD results at r/a = 0.7 (C-MOD)

5. Conclusion and prospects

A new two-dimensionalcodethat allows fast selfconsistentalculationsof the bootstrap
currentin thepresencef RF waveshasbeenwritten. It hasbeenshownthatthe synegism between
bootstrappndLH or EC drivencurrentscouldbealargefractionof theRF drivencompnent,under
thecondition of the bootstrapcurrentlevel is high. For LHCD, the synergismconcernghe driven
currentbut not the CD efficiency. Improvementis well understod by a simple analytical model.
Converselythe ECCDefficiencyis higherwhenbootstrapcurrentis accountedn the calculations.
Furtherwork remaingo bedonefor anarbitraryplasmaequilibrium,andhighinverseaspectatio.
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Fig. 4. 2-D contour plots of the perturbeddistribution &f, generatedby radial drifts with (dashed

lines) andwithout(solid lines) for ECCD (a) or OKCD (b). Thin dashedcontourscorrespondto EC

quasilineardomains.
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