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Abstract: In order to achieve steady-state high performance regimes in tokamaks, it is important to sustain and
control the pressure and magnetic shear profiles in high bootstrap current plasmas. RF waves can be used to achieve
such a goal. Then the bootstrap current fraction must be calculated selfconsistently with RF induced currents, taking
into account possible synergistic effects resulting from the distortion of the electron velocity-space distribution.
Results obtained with a new 3-D code that solves the electron drift kinetic equation to study the synergistic effects
are presented. While synergism between bootstrap and LH-driven currents remains modest, it may reach up to 30-
40% for the case of EC current drive provided the plasma parameters are properly chosen.

1. Introduction

In advanced scenarios, radio frequency (RF) induced currents have to be calculated self-
consistently with the bootstrap current, thus taking into account possible synergistic effects resulting
from the momentum space distortion of the electron distribution function fe. Since RF waves can
cause the distribution of electrons to become non-Maxwellian, the associated changes in parallel
diffusion of momentum between trapped and passing particles can be expected to modify the
bootstrap current fraction; conversely, the bootstrap current distribution function can enhance the
current driven by RF waves.

2. Drift kinetic formula tion

We follow the development in [1] for finding the electron momentum distribution function in the
selfconsistent interaction of RF current drive and bootstrap current. This approach solves the
electron drift kinetic equation
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where C(f) is the relativistic Fokker-Planck collision and Q(f) is the quasilinear RF diffusion
operator. Here, (r,θ) are the radial and poloidal positions, vθ is the velocity along the poloidal field
lines and vDr is the drift velocity across the field lines. An approximate formulation, based on an
expansion in the small parameter δ = τt,b/τDr, where τt,b is the electron's transit or bounce time, and
τdr is a typical time for the electron radial drift due to magnetic field gradient and curvature, is used
to determine the electron distribution function in the low collisionality regime. In the limit δ  <<  1,
it can be shown that f may be expressed as f ≈ f0 + δf1 = f0 + 
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˜ f  + g, where  
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˜ f  is the perturbation
due to radial drift and gradients, and g is the response of the plasma due to collisions and RF fields.
The first order term f0 is determined by solving the steady-state 3-D relativistic bounce-averaged
Fokker-Planck equation
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 where Ωθ is the poloidal gyrofrequency and v// the particle velocity

along the magnetic field line, and g is determined from
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where { } denotes the bounce-averaging operation.

3. Numerical implementation

The numerical solution of the set of equations has been carried out in the small inverse
aspect ratio limit ε = r/R0 << 1 for circular cross-section plasmas, using the 3-D Fokker-Planck
solver DKE [2,3]. This fully implicit code, written in MatLab® matrix language, is used to study the
interaction between the bootstrap current (BC) and the lower hybrid driven current (LHCD), the BC
and the electron cyclotron driven current (ECCD), and the the BC and the Ohkawa driven current
(OKCD) [4].

This code has been benchmarked against neoclassical resistivity calculations [5] and
bootstrap current calculations [6,7,8] (Fig. 1). A departure from the calculations of Ref. [8] arises at
large r/a because the condition ε << 1 is not well satisfied. The results of the code have also been
compared with previous simulations applying to the case of a runaway discharge. It has been shown
that the presence of a tail of fast electrons accelerated by the Ohmic electric field could significantly
improve the bootstrap current [9]. As shown in the Fig. 2, similar results are obtained with our code.
The slight difference may results from the fact that the dynamics of the electrons is described in the
whole momentum space, rather at the trapped/passing boundary only, as done in [9].
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Fig. 1. Bootstrap current comparison between the
code and theoretical predictions. The relative error
for the electron component with the law given by Ref.
[8] is presented in the insert, as well as the plasma
collisionnality [8]. Simulations are done for a typical
TORE SUPRA tokamak discharge

Fig. 2. Simulation of a run-away discharge on
the RTP tokamak [9]. The bootstrap current is
increased by 40% at r/a = 0.3. The method used
with RELAX code [9] that singles out the term
contributing to the boostrap current at the
trapped/passing boundary gives similar results to
the new approach [4]



The code has also been successfully benchmarked against other codes for LHCD and
ECCD calculations, not including the interaction with the bootstrap current. The radial transport of
the fast electrons and the role of the toroidal magnetic ripple in fast electron losses can also be
investigated [10].

4. Self-consistent current calculations

The code DKE is used to compute the following flux surface averaged quantities: the RF
current density <JRF > and the density of power absorbed <PRF> in the absence of bootstrap current;
the bootstrap current density <JB> in the absence of RF; the self-consistent (RF and Bootstrap) total
current density <J> and total density of power absorbed <P>. The synergistic current density is
given by <JS> = <J> - (<JRF>  + <JB>), and the figure of merit for the current drive is taken as η
=[(<J> - <JB>)/<P>] . This is compared with ηRF = <JRF> /<PRF>. The results are illustrated for
high performance scenarios in Alcator C-MOD [11]. In our studies the radial position is chosen to
be r/a=0.7 where the peak RF current drive is expected. At this location, density and temperature are
1.8×10+20 m-3 and 2.1 keV, respectively. We then find that JB=3.57 MA.m-2.

4.1 Lower Hybrid current drive (LHCD)

The LH power spectrum is assumed to be constant in k// between two limits fixed by

accessibility and by linear Landau damping (typically 
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≈ 3.5). The normalized LH quasilinear

diffusion coefficient is chosen to be
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2  which corresponds to  an incoming LH power
PLH of 2 MW. A parametric study of the synergism shows that the synergistic current increases
linearly with the temperature gradients but is independent of density gradients. This confirms the
analytical results obtained in the Lorentz limit Zi >> 1 [1] :

€ 

JS

JLH

≈
1

2
ερθ

dlnTe

dr

p// min

PTe

 

 
  

 

 
  

3

In Fig. 3 we plot contours of the synergistic fraction of the current <JS>/<JLH>, and of the figure of

merit η, for various temperature and density gradients (
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). If

the temperature gradient were made twice as steep, the bootstrap current would increase by 80% and
the synergistic fraction would rise accordingly from 5% to 12% of the LH driven current.

Fig.3. Synergistic fraction and figure of merit for the LH current drive problem at r/a = 0.7 (C-MOD)



Correspondingly, there is an 8% increase in the figure of merit.

4.2 Electron Cyclotron current drive (ECCD, OKCD)

ECCD at second harmonic with X-Mode excitation is considered, assuming a Gaussian
power spectrum centered around N//0 with a width ∆N// = 0.02. The maximum value of the EC
diffusion coefficient for an incoming power PEC of 10 MW is 
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D0
EC = 0.14νepTe

2 .  The study is
restricted to absorption on the low-field side (LFS) only. ECCD far off axis (r/a = 0.7) on the LFS
is known to lead to poor CD efficiency due to the Ohkawa effect generated by a large number of
trapped electrons. However, it is possible to use the Ohkawa current in a positive way, by launching
waves with N//0 < 0, and adjusting the wave parameters so that the EC diffusion region in velocity
space is located just below the trapped-passing boundary. Electrons are then mostly diffused into
the trapped region and the Ohkawa effect becomes dominant. This is referred as the Ohkawa
method for ECCD, and here noted as OKCD. The wave parameters N// and 2ωce/ω determine the
location of the EC diffusion region in momentum space, and can be varied so as to optimize the
current driven by either ECCD (N//0 = 0.28, 2ωce/ω  = 0.97) or OKCD (N//0 = -0.30,  2ωce/ω =
0.98). The self-consistent calculation of ECCD with BC is performed using these optimized
parameters and the results are presented in Table 1. A much larger current density is obtained for
OKCD than for ECCD. In addition, the figure of merit is better, thus making OKCD more attractive
than ECCD for off-axis CD on the LFS. A synergism is found both for ECCD and for OKCD, but
the synergistic fraction of the current is much larger for ECCD (28%) than for OKCD (5%). In
contrast to LHCD, synergism is also obtained in the figure of merit (25% increase in η for ECCD,
and 5% in OKCD). The physical mechanism of the synergism between ECCD or OKCD and the
bootstrap current can be visualized in a 2-D contour plot of the perturbed distribution δf1 =  
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˜ f  + g,
generated by the radial drifts, as displayed in Fig. 4.  In the case of ECCD, the synergism can be
simply interpreted as the Fisch-Boozer effect on the « bootstrap » distribution. The Ohkawa effect
on δf1 is however different from f0 because δf1  is mostly negative for p// < 0. Indeed, the synergism
between OKCD and bootstrap current is a competition between a negative effect of EC induced
electron trapping where δf1  < 0 and p// < 0, and a positive effect due the asymmetry in δf1 , which
leads to an increase in δf1  where p// > 0.

ECCD EC EC + Syn.
<J> (MA.m-2) 0.49 0.62
<P> (MW.m-3)

η (Am/W)
22.1
0.022

22.6
0.028

OKCD OK OK + Syn.
<J> (MA.m-2) 12.37 12.96
<P> (MW.m-3)

η (Am/W)
278.8
0.044

276.3
0.047

Table 1: ECCD and OKCD results at r/a = 0.7 (C-MOD)

5. Conclusion and prospects
A new two-dimensional code that allows fast selfconsistent calculations of the bootstrap

current in the presence of RF waves has been written. It has been shown that the synergism between
bootstrap and LH or EC driven currents could be a large fraction of the RF driven component, under
the condition of the bootstrap current level is high. For LHCD, the synergism concerns the driven
current but not the CD efficiency. Improvement is well understood by a simple analytical model.
Conversely, the ECCD efficiency is higher when bootstrap current is accounted in the calculations.
Further work remains to be done for an arbitrary plasma equilibrium, and high inverse aspect ratio.



Fig. 4. 2-D contour plots of the perturbed distribution δf1  generated by radial drifts with (dashed
lines) and without (solid lines) for ECCD (a) or OKCD (b). Thin dashed contours correspond to EC
quasilinear domains.
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