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Abstract.  We report  results of five investigations covering two-fluid dynamos, toroidal nonlinear MHD 
computation, nonlinear computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on 
tearing instability, and the effect of pressure on resistive instability.  The key findings are (1) two-fluid dynamo 
arising from the Hall term is much larger than the standard MHD dynamo present in a single-fluid treatment, (2) 
geometric coupling from toroidicity precludes the occurrence of nested helical flux surfaces, except for 
nonreversed plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, although 
magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge resonant m = 0 modes, which 
occur as spikes in experiment, and (5) pressure driven modes are resistive at low beta, only becoming ideal at 
extremely high beta.  
 

1. Introduction   
 
Large-scale tearing instabilities have long been considered to underlie transport and dynamo 
processes in the reversed field pinch (RFP). The vast majority of theoretical and 
computational RFP work has focused on pressureless, single-fluid MHD in cylindrical 
plasmas driven solely by a toroidal electric field. During the last two years significant 
progress has been achieved in analytical and numerical treatments of new approaches which 
are of practical importance for the RFP. Specifically, we report here results of five 
investigations covering two-fluid dynamos, toroidal nonlinear MHD computation, nonlinear 
computation of Oscillating Field Current Drive (OFCD), the effect of shear flow on tearing 
instability, and the effect of pressure on resistive instability. Each result is described below.  
 
2. Two-Fluid Dynamo 
 
Due to relatively low magnetic field and high plasma temperature, two fluid effects are 
important for the dynamics of tearing instabilities in the RFP. Although linear two-fluid MHD 
eigenfunctions are long known [1-3],  quasilinear two-fluid theory of Hall and alpha dynamos 
has not yet been developed. These effects are important for high temperature RFPs where the 
nonlinear dynamo action flattens the equilibrium current profile toward the Taylor state of the 
minimum energy. The tearing mode dynamo effect driven by the v × B term in Ohm’s law 
(sometimes known as alpha dynamo) has been investigated through the single fluid MHD 
theory [4], computation [5] and experiment [6]. Here we focus our attention on the case when 
the ion gyroradius is significantly larger than the electron skin depth so that electrons are 
decoupled from ions inside the linear tearing layer. This speeds up the instability and changes 
the spatial profiles of eigenfunctions in comparison the with single fluid MHD case. Similarly 
to quasilinear treatment of the fluid Reynolds stress [7], a two-fluid MHD theory is used to 
calculate quasilinearly two-fluid dynamo effects from tearing instability in a force-free 
(constant pressure) slab equilibrium relevant to the RFP. Fluctuations contribute to the 
parallel component  of the mean field generalized Ohm’s law as εε || = < E>|| − η< j >|| = −−1/c 
< v(1) × B(1) >|| + (1/ e n(0) c)< j(1) × B(1) >||  where <…> denotes flux surface average, the 
parallel components are defined with respect to B(0), and the superscripts (0), (1) indicate mean 
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quantities and linear fluctuations, respectively. Two-fluid effects influence dynamos in two 
ways: by altering the MHD < v(1) × B(1) >||  dynamo and by introducing a Hall < j(1) × B(1) >|| 
dynamo that arises from perpendicular current density fluctuations consistent with the 
magnetic perturbations B| |

(1). The two-fluid tearing mode eigenfunctions are evaluated using 
the generalized Ohm’s law in a compressible plasma. Instability dynamics relate to the kinetic 
Alfven wave in the range of parameters where this mode is decoupled from the compressional 
Alfven and slow magneto-acoustic modes. The growth rate is enhanced over the MHD growth 
rate, scaling as γ 3/2   1/3   sρδ∝  at large values of the stability factor ∆′ , δ 2/3

sρ 1/3 ∆′ >>1 and 
as γ ∝ δ ρs ∆′ in the opposite limiting case, where δ  is a combination of collisionless and 
collisional electron skin depth, δ2 = c2 / ωpe

2 + ηc2 /4πγ, and sρ  = cs /ωci is the ion-sound 
gyroradius, cs

2 = (γe Te + γi Ti ) / mi , γe,i = 5/3 . 
 
We examine the dynamo terms for two cases: the experimental case for which sρ >>δ  and, 
for comparison, the single-fluid MHD case for which sρ  << δ . For sρ >>δ  the Hall dynamo 
effect is larger than the single-fluid MHD dynamo by a factor (ρs /δ )2 ( for large δ ∆′ >>1), 
which is typically more than an order of magnitude in RFP plasmas. The Hall dynamo is 
localized to within a short distance δ 4/3/ρs

1/3 from the resonant surface. In two-fluid theory, 
the <v × B> term is also enhanced by a smaller factor (ρs /δ )2/3  and is broadened to a spatial 
scale of order sρ . At smaller ∆′ (δ ∆′ <<1), the ratio of Hall dynamo to the single-fluid MHD 
dynamo decreases with ∆′  proportional to (∆′ρs )2 for (δ /ρs)1/3<< δ ∆′ <<1 and then increases 
as ρs /∆′ δ 2 for δ ∆′ << (δ /ρs)

1/3 that corresponds to the MST RFP case (∆′∼ 5) and provides 
an order of magnitude enhancement factor for Hall dynamo. The enhancement factor for two 
fluid <v × B> dynamo monotonically decreases with ∆′ for all δ ∆′ <<1 passing through unity 
at δ ∆′∼(δ /ρs)1/3. These results motivate experimental studies of two-fluid effects in the RFP. 
 
2. Toroidal Geometry Effects 
  
It has been established that solutions to the time-independent resistive MHD equations in a 
periodic cylinder include helical Ohmic equilibria with average axial field reversal [8].  
Further, Cappello and Escande have found a transition between these steady single-helicity 
laminar states and unsteady multi-helicity states at Hartmann number H~2500 for aspect ratio 
R/a=4 and pinch parameter Θ=1.9 [9].  In toroidal geometry, pure single-helicity solutions do 
not exist, due to the geometric coupling among different poloidal Fourier components (m-
numbers) for any toroidal Fourier component (n).  Nonetheless, laminar states with a 
significant volume of nested helical flux surfaces may exist.  Here we report on a numerical 
study with the NIMROD code [10] that investigates laminar pinch states in toroidal geometry. 

 
To explore conditions where toroidal geometry effects may be important, we have run a 
number of pinch simulations in both toroidal and periodic cylindrical geometry at S=2000 
while varying viscosity (Pm=1, 10, and 100), aspect ratio (1.1≤R/a≤5), and pinch parameter 
(1.4≤Θ≤2).  At Pm=1 (H=2000) and Θ≥1.6, we find that the usual nonlinear multi-helicity 
coupling among resonant fluctuations dominates geometric coupling, and there is little to 
distinguish the toroidal results from cylindrical results.  At Pm=10 in cylindrical geometry, 
single -helicity states with nested helical flux surfaces result, but the same conditions in 
toroidal geometry produce magnetic stochasticity over most of the domain (see Fig. 1a). The 
mean magnetic field in these cases exhibits reversal, so m=0 fluctuations are resonant. An 
m=0 island chain is evident, and the n-number of the chain matches that of the dominant, 
helical m=1 perturbation, so we infer that the excitation is geometric, rather than nonlinear.  If 
Pm is increased to 100 or Θ is decreased to 1.4, the resulting mean field loses reversal, hence 
m=0 is not resonant.  With m=0 islands precluded, nested helical flux surfaces form (Fig. 1b).  
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The results are then qualitatively similar to the corresponding cylindrical results. The 
importance of the m=0 resonance for the formation of nested helical flux surfaces in toroidal 
geometry has been confirmed over aspect ratios 1.25≤R/a≤5. 

     
                      FIG.1. Poincaré surfaces of section for magnetic field resulting from NIMROD            
                      toroidal pinch simulations with R/a=1.75, Pm=10, and a) Θ=1.8 and b) Θ=1.4. 
 
3. MHD Dynamics of Oscillating Field Current Drive (OFCD) 
 
Oscillating Field Current Drive (OFCD), also called F-Θ pumping, was first proposed in [11] 
as a technique to drive steady-state current in the RFP. In OFCD helicity is injected by 
oscillating the toroidal and poloidal surface voltages 90o out of phase. We investigate the full 
nonlinear dynamics of OFCD using 3-D resistive MHD computation in a cylinder, (the DEBS 
code) at Lundquist numbers up to S = 5 × 105, and aspect ratio R/a = 1.6. The penetration of 
driven axisymmetric oscillating fields, the response of the helical tearing instabilities, and the 
driven current are examined. We also evaluate the 1D response of the plasma to compare the 
actual 3D situation with 1D case in which the tearing modes are absent.  In the absence of 
tearing fluctuations, oscillating fields generate a steady-state edge current driven by the 
dynamo effect (<v00 x B00>) from the axisymmetric velocity and magnetic field oscillations.  
 

  
  FIG.2  Total axial current vs. time. The ac                FIG.3 Time averaged current density profiles  
  fields Ez = εz sin(ω t), Eθ = εθ sin(ω t + π/2)              for standard RFP and OFCD plasma 
  are applied at  t=0.035τR  ( S = 5 × 105 ) 
 
The 3D computation shows that the tearing fluctuations transport the edge current towards the 
center (by the tearing mode dynamo),  resulting in a steady-state current over the entire cross-
section. Fig.2 illustrates the total plasma current sustained by OFCD in the absence of a dc 
electric field . Although OFCD is able to sustain the plasma current, the current oscillations 
are large (at S=105 the current oscillates by 100%). The oscillating amplitudes required to 
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drive a given amount of  total current decrease at high S. We find that the current oscillations 
decrease to about 50% at S = 5 × 105.  
 
The radial profile of time averaged current in an OFCD plasma is shown in Fig.3. The 
mechanism of current penetration into the core is investigated by analyzing the dynamo terms. 
The dynamo from the axisymmetric oscillations drives a time averaged edge current (Fig.4 
(a)) while the core current is sustained by the dynamo from the helical tearing fluctuations 
(Fig.4 (b)). As the reversal parameter F deepens through a cycle, edge resonant modes (modes 
resonant outside the reversal surface) are excited, resulting in large fluctuation amplitudes. It 
is expected that this global (nearly ideal) edge mode may be suppressed in high S plasmas 
where the reversal is weak. OFCD is presently being tested in MST experiments. 
 
4. Effect Of Toroidal Flows On Tearing Mode Stability 
 
Linearized MHD equations in cylindrical geometry are solved numerically to determine the 
stability factor '∆  for toroidal flows with shear localized away from the rational surface in the 
external region [12]. Both m=1 and m=0 modes are destabilized by edge-localized flows. For 
flows whose shear is consistent with the edge shear layer of enhanced confinement in MST, 
the growth rate of m=1 modes is increased by a small factor, while m=0 modes change from 
damped to growing. The destabilization of m=0 modes by edge localized flow shear may thus 
account for the m=0 bursts observed in the experiments. The steady state rotation profiles 
with shear in the region of modes with n>6, but outside the n=6 surface is shown to 
destabilize the n=6 mode and stabilize modes with n>6. This may account for an observed 
propensity toward the formation of quasihelicity n=6 states during pulsed poloidal current 
drive. 
 
5. Resistive-Ideal Transition of Pressure-Driven Instabilities  
  
In experimental RFP plasmas with improved confinement beta is increasing to the point that 
pressure-driven instabilities can begin to be significant. We examine the linear MHD stability 
of local and global resistive pressure-driven instabilities computationally in a cylinder [13]. A 
localized pressure-driven instability in a bad curvature region is excited if the stability 
parameter DS > 0.25 [14]. The analytical calculation [15,16] shows that the growth rate 
depends on DS (which is proportional to beta). It is exponentially small near the ideal limit 
(DS = 0.25), becoming large for DS values well above this limit. Here we employ initial value 
computation (DEBS code in the linear regime) to evaluate the growth rate and radial 
structure, for arbitrary wave number. To isolate the pressure driven modes, an equilibrium 
which is stable to resistive current driven modes is chosen (by the ∆′ criterion).  
 
The dependence of growth rate on DS for the m=1, k=10.5 mode at  S=106  is shown in Fig. 5. 
We find that the transition from resistive to ideal interchange modes occurs at high DS ∼1.0. 
For a rather wide range of beta, from zero to several times the Suydam limit, the high-k 
interchange mode is resistive. It is resistive in its radial structure i. e. the radial field is non-
zero at the resonant surface, and its growth rate, which is small and scales as S-1/3 at low DS,  
whereas at very high DS, γ is roughly independent of S (ideal scaling).  
 
We have examined the growth rate and radial structure of global modes, low-k pressure-
driven modes, and find that they also display a transition from resistive to ideal instability as 
beta increases. We observe that the growth rate for the global modes is about equal to that of 



5                                                                                                                                TH/P2-08 

the localized interchange. Since the localized modes are more subject to stabilization by finite 
Larmor radius, the global modes will likely be more influential at high beta. 
 

 
          FIG.4  Cycle- averaged dynamo terms            FIG.5. The growth rate vs. DS . Computational 
           from: (a) symmetric oscillations,                     results for resistive modes (∆ ), pure ideal  
                    (b) helical tearing fluctuations               modes (o), analytical result for idea linterchange 
                                                                                    modes ( solid line), the Suydam limit (dashed line)   
 
6. Summary 
 
The key results obtained for two-fluid, toroidal and nonlinear effects in RFP: (1) quasilinear 
theory predicts that the two-fluid dynamo arising from the Hall term is much larger than the 
standard MHD dynamo present in a single-fluid treatment, (2) geometric coupling from 
toroidicity precludes the occurrence of nested helical flux surfaces, except for nonreversed 
plasmas, (3) OFCD, a form of AC helicity injection, can sustain the RFP plasma current, 
although magnetic fluctuations are enhanced, (4) edge shear flow can destabilize the edge 
resonant m = 0 modes, which occur as spikes in experiment, and (5) pressure driven modes 
are resistive at low beta, only becoming ideal at beta values several times the Suydam limit. 
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