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Abstract. Stability analysis of periodic flows and whistlers with respect to long-wavelength perturba-
tions within the framework of dissipative electron magnetohydrodynamics (EMHD) based on two-scale
asymptotic expansion technique is presented. Several types of flows are considered: two-dimensional
Kolmogorov-like flow, helical flow, and anisotropic helical flow. It is shown that the destabilizing ef-
fect on the long-wavelength perturbations is due to either the negative resistivity effect related to flow
anisotropy or a-like effect related to its microhelicity. The criteria of the corresponding instabilities are
obtained. Numerical simulations of EMHD equations with the initial conditions corresponding to two

types of periodic flows are presented.

1. It is known that at some critical amplitude of the velocity both two-dimensional
(Kolmogorov) [1]-[4] and three-dimensional (Beltrami) [3, 5| periodic flows in viscous
fluid become unstable with respect to long-wavelength perturbations with the wavevec-
tor perpendicular to the wavevector of basic flow. A similar instability takes place for
the Rossby waves in the ocean and atmosphere and for drift waves in magnetized plas-
mas [6]. Being unstable the above mentioned periodic flows and waves are capable of
generating large-scale coherent structures which are of interest for researchers due to
their assumed role in a variety of physical phenomena such as an enhanced (compared to
molecular) transport in fluids, anomalous transport of particles and energy in magnetized
plasmas, self-organization. In the present paper in the framework of electron magneto-
hydrodynamics (EMHD) stability analysis of periodic flows and whistlers with respect to
long-wavelength perturbations is presented.

2. EMHD equations describe small-scale (I < c¢/wp;) phenomena on the time scales
1/wpe < t < 1/wp;, where w,; is the Langmuir frequency of ions and wpg,; are the
gyrofrequencies of electrons and ions, correspondingly. Such phenomena are important in
systems in which there is substantial electron drift motion across the magnetic field, e.g.,
z-pinches, plasma erosion switches, laser-produced coronas 7], and possibly in tokamaks
with an intensive electron cyclotron resonant heating [8]. In the ranges of length and
time scales mentioned above, the electrons can be described by fluid equations; the ions
form an immobile, charge neutralizing background. In the simplest case when the back-
ground plasma density is homogeneous (ny = const), the perturbations are considered to
be quasineutral (the density remains unperturbed) and the electron finite-Larmor-radius
effects are negligible, EMHD equations reduce to (see, e.g., [7, 9]):

% (B - d2V’B) = curl [(B - d’V’B) x curl B] + vV’B + 1. (1)
Here the spatial variables are normalized to [ = A/27 (A is the wavelength of the periodic
flow (or whistler), time — to whistler time ¢y = wp. (lw,e/c)?, the magnetic field strength
is expressed in terms of By, which corresponds to the amplitude of magnetic field of
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the initial periodic flow (or in the case of whistlers — to the background magnetic field),
de = ¢/wpel is the normalized electron collisionless skin depth, and v = 1/wg,T, is related
to plasma resistivity (7, is the ion-electron collision time). The r.h.s. of the equation is
augmented with the source term f, the role of which is to compensate the decay of the
initial periodic flow (or whistler) due to finite plasma conductivity.

It is assumed that as a result of some kind of plasma instability (primary instability)
or by means of the external source the periodic flow (or whistler) B°, which satisfies
Eq.(1), is created in plasma. To maintain its amplitude constant the source term is
taken in the form f = —vV2B°. The instabilities of such a periodic flow with respect to
the small-amplitude, long-wavelength perturbations are studied (secondary instabilities).
Due to an assumption of the distinct separation of the characteristic space and time scales
of the initial flow and its perturbations the two-scale asymptotic expansion method is ap-
plied in the analytical analysis.

In addition to analytical analysis Eq.(1) with the initial conditions corresponding to pe-
riodic flows is solved numerically. The numerical simulation allows to check the validity
of the analytical approximations applied and to generalize the results to the case of the
perturbations with the wavelengths comparable to that of the initial flow. Below the
analytical and in some cases numerical results for three different types of periodic EMHD
flows and whistlers are presented.

3. The Kolmogorov-like flow. The simplest exact solution of Eq.(1) is a two-dimensional
flow characterized by

0 0 .
B" =cosze,, v.oxcurl B® =sinze,. (2)

The flow velocity is directed along the y-axis, and its amplitude depends on x, and such a
flow is similar to the Kolmogorov flow in hydrodynamics (see, e.g., [3]). In the case of large
magnetic Reynolds number (v < 1), the multi-scale expansion analysis results in the fol-
lowing asymptotic dispersion relation of perturbations with the wavevector perpendicular
to the wavevector of initial flow

v =5+ B = ), 8

where v is the growth rate of the perturbation and q is its wavevector, ¢ ~ v%. This
asymptotic dispersion relation is similar to that of in the case of the Kolmogorov flow at
large Reynolds numbers [1, 2|. As it follows from Eq.(3) the most unstable perturbations
have the wavevector q = (0,0, ¢,) which is perpendicular to the direction of the basic
flow v.. The source of instability is related to the initial small-scale periodic flow which
results in the negative resistivity effect on b,-component of the long-wavelength magnetic
field. The y- and z-components of magnetic field of the perturbation damp due to plasma
resistivity. The growth rate of instability is proportional to magnetic Reynolds number
v~1. A similar effect has been found in the recent paper [10] where the effect of anisotropic
small-scale EMHD turbulence on the larger-scale perturbations has been considered. The
results of numerical simulation of the Kolmogorov-like flow are presented on Fig. 1. These
results are in a good agreement with the analytical ones when the latter are applicable.
The numerical analysis also shows that the perturbations are stable when their wavelength
is comparable to that of the initial flow.
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Figure 1: The dependence of the growth rate on q, for the Kolmogorov-like flow, d, = 7, v = 0.1,
qy/q. = 0.01. Here: the crosses correspond to the results of numerical simulation and the stroke
line — to the asymptotic formula (3). In the region q, < v2kq the analytical and numerical results
coincide, when q, = 0.4kq there is a mazximum of the growth rate, and when q, ~ ko the mode
becomes stable

4. Helical Beltrami-like flow. Another stationary solution of EMHD equations is
B’ = e,sinz + e, cos . (4)

It is similar to three-dimensional Beltrami flow in hydrodynamics (see, e.g.,[3]). This
flow has the structure of magnetic field similar to whistlers in the limiting case of zero
frequency and the wavenumber k, = 0 (see below). It belongs to the so-called force-
free equilibria with curl B = BY and possesses non-zero microhelicity B? - curl B® = 1.
Assuming that v < 1, it is found that the initial helical flow results in the a-like effect
on the long-wavelength perturbations which is proportional to its microhelicity, and the
asymptotic dispersion relation takes the form

1
(v +vg*)? = oL A, q= /a2 +q =1 (5)

If d, < 1 the perturbations with ¢ > 21%/,/1 — d? are unstable. At the same time, when
d. > 1 the right hand side of Eq.(5) is negative, and in this case the basic periodic flow
results in the mode with Im~y # 0, i.e. Rew # 0, which damps due to plasma resistivity.
Therefore in this case the helical flow is stable with respect to long-wavelength pertur-
bations. The numerical simulation (see Fig. 2) shows the existence of the instability
thresholds with respect to ¢ both from below (in accordance with the analytical predic-
tions) and from above (when the wavelength of the perturbation is of the order of that
of the initial flow). Also the numerical calculations clearly show the existence of stability
boundary with respect to d, — the perturbations become stable when d, > 1.

5. Anisotropic helical flow. Along with the isotropic helical flow Eq.(1) admits the solution
which can be called anisotropic helical flow

B’ = e, sinz cos a + e, cos x sin a. (6)
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Figure 2: The dependence of the growth rate on q for the helical flow, d. = 0.1, v = 0.1.
Here: the crosses correspond to the results of numerical simulation and the stroke line — to the
asymptotic formula (5). Transfer to stability regions is observed both at small (q/ko < 0.01) and
at large (q/ko > 0.8) values of the wavenumber of perturbations

On the one hand, this solution possesses non-zero microhelicity, B"-curl B’ = (1/2) sin 2a,
on the other hand, it is anisotropic in yz-plane in the sense that the difference of squared
amplitudes of the magnetic field in y- and z-directions is proportional to cos2a; and is
not equal to zero. Unlike isotropic helical flow the solution Eq.(6) does not belong to the
class of force-free equilibria and satisfies the condition

[(B° — d?V*B") x curl B°] = (14 d*)V (BQO)2 (7)

In the case of strong anisotropy (cos2a ~ 1) microhelicity effect on the long-wavelength
perturbations is negligible and stability conditions found in the case of the Kolmogorov-
like flow are applicable to anisotropic helical flow with a substitution 1 — cos 2« in Eq.(3).
In the case of weak anisotropy cos2a ~ v? the effects due to anisotropy (resistivity-like
term in the equation of the evolution of x-component of the long-wavelength magnetic
field) and due to microhelicity (a-like effect) are comparable, and the asymptotic disper-
sion relation takes the form (q ~ v/?)

5 COS2a
v=-vg+

1
N )
(I+dg)(qy, — ;) £ @\/COS2 2a(1 + d2)%(q2 — ¢2)* +sin” 2a(1 — dg)qS.
(8)
6. Stability of whistlers. If plasma is imbedded in the homogeneous magnetic field B

directed along z-axis, EMHD equations admit the waves with nonzero frequency called
whistlers

B=e,+B’ B’=Cy(—k.e,cost+e,siny + ke, cosp), 9)

where the first term describes the background magnetic field and

Y=k +kz—wk)t, k=\k2+k2=1 wk) = T (10)
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Here the magnetic field strength is normalized to By. Since curl B = B? whistler
is a force-free solution and possesses non-zero microhelicity B® - curl B = C2. The
perturbations are considered to be periodic with respect to ¢ and also to depend on slow
variables defined by the ordering X = 1v?x,T = v't,7 = v°t. Two slow time scales
correspond to the period of long-wavelength whistler (7') and to its slow evolution due to
dissipation and the effect of initial whistler (7). Then the asymptotic dispersion relation
of the long-wavelength perturbations is

108 2\ 3 .2
Q==qq+ i~ —d)g” | —ivg. (11)

Independently of the sign of 1 — d? one of two long-wavelength whistlers is unstable if its
wavenumber satisfies the condition ¢C3|1 — d?|/4v* > 1.

Thus, one can conclude that, generally speaking, the periodic EMHD solutions tend to
be unstable with respect to long-wavelength perturbations which enables to predict the
possible energy transfer to large scales in EMHD turbulence (the inverse cascade).
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