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Abstract. The linear stability of high-toroidal-number drift-ballooning modes in

tokamaks is investigated with a model that includes resistive and viscous dissipation,

and assumes the mode frequency to be comparable to both the sound and diamagnetic

frequencies. The coupled effect of ion drift waves and electron drift-acoustic waves is

shown to be important, resulting in destabilization over an intermediate range of toroidal

mode numbers. The plasma parameters where the assumed orderings hold would be ap-

plicable to the edge conditions in present day tokamaks, so these instabilities might be

related to the observed quasi-coherent edge-localized fluctuations.

Experimental observations in the Alcator C-Mod tokamak indicate a well defined

transition that separates ELM-free H-mode behavior, in which the edge plasma is fluc-

tuation free, from Enhanced-Dα (EDA) behavior, in which a localized instability (the

quasi-coherent mode) is present in the edge pedestal [1]. It is possible that these ob-

servations could be explained by a linear stability threshold. Even though ideal-MHD

ballooning modes might be near their stability threshold, electron and ion diamagnetic

corrections are likely to be important, as are interactions with acoustic waves. Dissipa-

tive effects (especially resistive effects) are also likely to be important. In this paper we

investigate the linear stability of drift ballooning modes using a simple model for the

plasma equilibrium (the s − α model [2]), but including a variety of non-ideal physical

effects. We derive a simple eigenmode equation for drift ballooning modes by consider-

ing an optimal ordering in which ω ∼ ωs ∼ ω∗j ∼ µk2
⊥ ∼ η‖k2

⊥, where ω is the mode

frequency, ωs ≡ Cs/Rq is the frequency for sound propagation over a connection length

with C2
s = (Ti + Te)/mi and R the major toroidal radius, ω∗j = (k× b) · ∇pj/(NeB) is
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the diamagnetic frequency for species j, µ = 0.3νiiρ
2
i is the classical perpendicular vis-

cosity with ρi = (Ti/miω
2
ci)

1/2 the ion Larmor radius, and η‖ is the longitudinal Spitzer

resistivity. The s−α equilibrium model with s = rq′/q and α = −2Rp′q2/B2 ∼ O(1), is

employed and a two length scale averaging formalism is developed, using ω/ωA � 1 as

the expansion parameter, with ωA = VA/Rq, V
2
A = B2/(Nmi). The resulting eigenmode

equation contains the following physical effects: (1) ideal-MHD instability drive (through

the boundary condition), (2) resistive diffusion leading to resistive ballooning modes, (3)

sound wave propagation, (4) two-fluid diamagnetic effects which modify sound waves

into electron drift-acoustic modes and introduce finite ion Larmor radius effects, and (5)

perpendicular ion viscosity. The two different classes of resistive ballooning modes, viz

those driven locally (in radius) by the geodesic curvature (the Carreras-Diamond modes

[3]) and those driven by the ideal-MHD energy (characterized by the stability index ∆′
B

[4,5]) are both described by the eigenmode equation.

A simple set of reduced two-fluid equations has been given in Refs.[6,7]. We further

simplify these equations by assuming that the equilibrium ion and electron temperatures

are equal and constant, and ions and electrons are isothermal. We also specialize them

to the s − α equilibrium model. Finally we adopt our ”drift ordering”, that assumes

all the frequencies, ω, ωs, ω∗j, µk2
⊥, η‖k

2
⊥ to be comparable and small compared to the

Alfven frequency ωA. It follows that the resistivity, the viscosity and the inertia only

become important at large values of the extended ballooning variable θ. A two length

scale analysis is performed by introducing the stretched variables Z = εηsθ where εη =

[η‖n2q2/(r2ωA)]
1/3, and X2 = iεηωAZ

2/(ω − ω∗e) in the secular terms of the ballooning

equations. The result is an averaged ballooning equation of the form:

s2 d

dX

(
X2

1 +X2

dU0

dX

)
−

[
X2Q+X4T

]
U0 = 0, (1)

with

Q(X) = iω̂(ω̂ − ω̂∗i)(ω̂ − ω̂∗e)
[
1 + 2q2P (X)

]
− α2

2
[1− P (X)] , (2)

P (X) =
ω2

s

ω2
s − [ω + 4µ̂(ω − ω∗e)X2](ω − ω∗e)

, (3)

and

T (X) = iµ̂(ω̂ − ω̂∗e)2(ω̂ − ω̂∗i)[1 + 8q2P (X)]. (4)
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In these expressions µ̂ is a normalized perpendicular viscosity and the notation ω̂j denotes

the dimensionless frequency ω̂j = ωj/(εηωA). Equations (1-4) describe the coupling

of visco-resistive ballooning modes to drift-acoustic waves. The novel feature of the

foregoing two-scale analysis, lies in the ordering ω/ωs ∼ 1. In much previous analyses

either the ordering ω/ωs � 1 was assumed with the result that the geodesic curvature

(Carreras-Diamond) drive was lost, or the limit ω/ωs � 1 was taken so that sound wave

propagation was neglected. Our equations provide a bridge between these two extremes,

not only for studying visco-resistive ballooning modes, but also for investigating finite

Larmor radius effects on ideal modes. The relevant dispersion relations are obtained

by asymptotically matching the solution of Eqs.(1-4) to the solution in the ideal-MHD

region:

U0(Z → 0) = 1 +
εη∆

′
B

Z
, (5)

where the quantity −1/∆′
B is a measure of the ideal-MHD energy, δW , available to drive

the n → ∞ ballooning mode.

In the absence of resistive and viscous dissipation we obtain the following dispersion

relation:

ω(ω − ω∗i)
[
(1 + 2q2)ω2

s − ω(ω − ω∗e)
]
+

(
sωA

∆′
B

)2 [
ω2

s − ω(ω − ω∗e)
]
= 0 (6)

Ignoring the coupling to drift-acoustic waves (i.e in the ωs → ∞ limit) we recover the

standard finite Larmor radius dispersion relation which implies that all sufficiently short

wavelength modes with n > ncritical are stabilized. Taking into account the coupling

to drift-acoustic waves modifies the standard result in such a way that, assuming ideal

instability, both a high-n and a low-n range of modes are stabilized but an intermediate

range of toroidal mode numbers is always unstable. Specifically, the finite Larmor radius

stabilization of ideal modes is lost when the ion drift wave is resonant with one of the

electron drift acoustic wave branches: ω∗i(ω∗i − ω∗e) = (1 + 2q2)ω2
s . At this point the

dispersion relation reduces to:

ω = ω∗i ± 2iqsωA

∆′
B[3(1 + 2q2)]1/2

+O
( ω2

A

∆′2
Bω∗i

)
, (7)

so that the growth rate of the ideal instability is actually enhanced by a factor (2/31/2)q

above the value it would have in the absence of diamagnetic effects.
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With finite resistivity but still zero viscosity, we obtain the following dispersion for

drift-resistive ballooning modes:

εη∆
′
B = −

(
ω − ω∗e
iεηωA

)1/2
Q

1/4
0

8s1/2

Γ[(Q
1/2
0 /s− 1)/4]

Γ[(Q
1/2
0 /s+ 5)/4]

, (8)

where Q0 = Q(µ̂ = 0). These modes can be driven unstable by a positive ∆′
B or, for

even negligible εη∆
′
B but finite pressure gradient, by the α term in Q0. For negligible

εη∆
′
B, their dispersion relation is given by Q0 = 0 or

(ω − ω∗i)[(1 + 2q2)ω2
s − ω(ω − ω∗e] − i

2
α2ω3

Aε
3
η = 0. (9)

For vanishing α this predicts three waves: an ion drift wave and a pair of toroidally mod-

ified electron drift-acoustic waves. In the ωs → 0 limit, the pressure gradient α drives

instability of the low frequency branch of the electron drift-acoustic wave [8]. However,

our Eq.(9) shows that, allowing for finite ωs, their growth rate is strongly enhanced when

the low frequency branch of the electron drift-acoustic wave is degenerate with the ion

drift wave. This is the same mechanism responsible for the loss of finite Larmor radius

stabilization of ideal modes.

Perpendicular viscous effects enter Eqs.(1-4) in two ways. First, the term T contains

the viscous drag on the perpendicular velocity in agreement with Refs.[9,10]. Second,

the factor P contains the drag on the parallel flow and introduces, as noted in [11], a

strong toroidal enhancement of the viscosity in the limit ωs → ∞. Our expression for

µ̂ assumes its classical value and is therefore much less than unity. So we can expand

P (µ̂) = P0 + µ̂P1 and approximate Eq.(1) by

s2 d

dX

(
X2

1 +X2

dU0

dX

)
−

[
X2Q0 +X4T0

]
U0 = 0 (10)

with Q0 = Q(P0) and T0 = T (P0) + 2µ̂P 2
0 [α

2 + 4iq2ω̂(ω̂ − ω̂∗i)(ω̂ − ω̂∗e)][(ω − ω∗e)/ωs]
2.

Now we can obtain a variational expression for the dispersion relation using the trial

function

U0(X) = X1/2K1/4(σX
2)

{
1−

[(
iεηωA

ω − ω∗e

)1/2

εη∆
′
B − (σ/2)1/2Γ(3/4)

Γ(5/4)

]
X

}
, (11)

where K1/4 is the modified Bessel function and σ is a variational parameter. This choice

of trial function incorporates the correct boundary condition matching the ideal-MHD
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solution as X → 0, and reduces to the exact eigenfunction in the inviscid limit T0 = 0.

For negligible ∆′
B drive, the resulting variational dispersion relation is

Q0 + 2.46(sT0)
2/3 = 0. (12)

We have obtained numerical solutions of this variational dispersion relation. They show

that viscosity does not supress the intermediate-n instability associated with the cou-

pling of ion drift and electron drift-acoustic waves.
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