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Abstract. We have found numerically that damping phases appear in the time evolution of the perturba-
tion energy of high-n ballooning modes in the presence of toroidal shear flows. The damping dominates
exponential growth which occurs in the bad curvature region, resulting in stabilization of ballooning
modes. D-shaping of plasma cross-section, reduction of aspect ratio, and arrangement of X-point at
inner side of the torus enhance the stabilization effect of the toroidal flow through this mechanism.

1 Introduction

The edge localized modes (ELMs) [1] in the H-mode [2] tokamak plasmas are the magnetohy-
drodynamic (MHD) activity. Type-I (giant) ELM is related to ideal MHD ballooning modes or
peeling modes [1, 3]. At the edge region of the tokamak, the plasma often rotates. The rotation
is considered to affect the MHD stability.

The WKB theory for high-n ideal MHD ballooning modes was developed by Connor, Hastie
and Taylor [4]. Introduction of Doppler shift in the eikonal representation for the perturbation
enables us study of high-n ballooning modes for toroidally rotating tokamaks [5–9]. It was
shown that the high-n ballooning equations including toroidal flows have dynamical symmetry,
and the solutions can exhibit periodically modulated exponential growth. Numerical solutions
for the Shafranov equilibrium were shown in Ref. [10], and the unstable region in the so-called
S –α diagram was shown to shrink by the toroidal flow shear.

However, the mechanism of stabilization for ballooning modes by the toroidal flow shear has not
been fully clarified. If the flow shear is very small, then ballooning perturbation is considered
to evolve as in a static plasma with a given ballooning angle θk at each instance. This leads to
an expression of the growth rate in a rotating plasma; γ =

∫ π

−π γ
stdθk/2π, where γst is the growth

rate in a static plasma and is a function of θk [10]. However, if γst > 0 for any θk; i.e., pressure
gradient exceeds its critical value in a static plasma, γ > 0 since γst ≥ 0 in the ideal MHD
model. Then the system cannot be stabilized. Therefore we have studied the mechanism of
stabilization numerically, and found that the perturbation energy damps owing to the flow shear.
The damping occurs in the good curvature region. When the damping dominates the exponential
growth in the bad curvature region, the ballooning mode is stabilized. Thus, the stabilization
of ballooning modes by the toroidal flow shear is expected to be enhanced by the reduction of
(i) the instantaneous growth rate and (ii) the duration of the exponentially growing phase. In
this paper we control them by changing geometrical parameters such as aspect ratio, ellipticity,
triangularity, and position of X-point. We found numerically that D-shaping, reduction of aspect
ratio, and arrangement of X-point at inner side of the torus enhance the stabilization effect of
the toroidal flow. In Section 2, the physical mechanism of stabilization is clarified. In Section 3,
the sensitivity to the geometrical parameters such as aspect ratio, ellipticity, triangularity, and
position of X-point are investigated. Conclusions are given in Section 4.
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2 Mechanism of Stabilization

We obtain MHD equilibria by solving the Grad-Shafranov equation including toroidal flows
[13] numerically under semi-fixed boundary condition. The pressure profile has a large gradient
near the plasma edge. The poloidal beta is βP = 1.2 for equilibria with the aspect ratio A = 3,
and the ratio βP/A = 0.4 is fixed when A is varied to keep the Shafranov shift. The current
density profile is slightly modified from a parabola to adjust the safety factor q = 5 at the 95%
flux surface. We have investigated the stability on the 95% flux surface, which is 3–5cm inner
from the separatrix when the minor radius is 1m. The total plasma current is adjusted so that
q = 1 at the magnetic axis. As for the toroidal flow, the flow shear can be given arbitrarily
on a magnetic surface since the flow shear does not contribute to the force balance as long as
the magnitude of the flow itself is zero. Thus the toroidal rotation frequency Ω is zero in the
equilibrium calculations. Finally, when a magnetic-shear parameter sm and a pressure-gradient
parameter αp are varied on a magnetic surface, we have used the local equilibrium of Greene
and Chance [14].

First we show in Fig. 1 the time evolution of ‖ξ2
⊥‖ and ‖ξ2

‖ ‖ for the aspect ratio A = 3, the
ellipticity κ = 1.4, the triangularity δ = 0.4, the magnetic shear parameter sm = 3, the pressure
gradient parameter αp = 3.4, and toroidal flow shear Ω′τA = −0.03, where ‖a‖ ≡

∫
adϑ, ϑ is

the poloidal angle in the covering space, and τA is the Alfvén time (connection length/Alfvén
velocity). The prime denotes the derivative with respect to the normalized poloidal flux. The
value of Ω′τA = −0.03 is achieved in conventional tokamak experiments [15]. In National
Spherical Torus Experiment (NSTX), Ω′τA ' −0.3 is obtained [16]. The horizontal axis denotes
time normalized by the period τd ≡ 2π/(dΩ/dq). The vertical line at t/τd = 1 and 2 indicates
the timings when the phases of each twisted slice mode are the same at θ = 0 (bad curvature
side) [9].
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FIG. 1. Time evolution of ‖ξ2
⊥‖ and ‖ξ2

‖ ‖.
When the phases of each twisted slice mode
are the same at θ = 0, ‖ξ2

⊥‖ grows exponen-
tially.
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FIG. 2. Time evolution of ‖ξ2
⊥‖ for αp = 3.0

(stable) and 3.4 (unstable). Stability is deter-
mined by the competition between the expo-
nential growth and the damping of ‖ξ2

⊥‖.

We found from Fig. 1 that damping phases appear in the time evolution of ‖ξ2
⊥‖. The damping is

the crucial mechanism for the stabilization due to the flow shear. We also found that ‖ξ2
⊥‖ grows

around t/τd = 1, 2, · · · , and ‖ξ2
‖ ‖ begins to grow after ‖ξ2

⊥‖ becomes sufficiently large. If ‖ξ2
⊥‖

does not increase on the average over the time period, then ‖ξ2
‖ ‖ oscillates rather than grows or



3 TH/P2-03

damps. The instantaneous growth rate is nearly equal to the growth rate in the static plasma.
As for the time duration of the exponentially growing phase, it is very short in Fig. 1, since the
unstable region in the θk space is narrow in the static plasma. Thus ‖ξ2

⊥‖ is closely related to the
driving mechanism of the instability, and therefore we focus on it in the following.

In Fig. 2, the time evolution of ‖ξ2
⊥‖ is shown for αp = 3.0 and 3.4. The flow shear is Ω′τA =

−0.03. We found that the damping of ‖ξ2
⊥‖ dominates the exponential growth at t/τd = 1, 2, · · ·

for αp = 3.0, and the ballooning mode is stabilized. For αp = 3.4, on the other hand, the
damping is not strong enough to dominate the exponential growth. The competition between
the damping and the growth determines the stability of the ballooning mode in the presence of
the toroidal shear flow.

Therefore, we expect that the stabilization of ballooning modes by a flow shear could be further
enhanced by reduction of (i) the instantaneous growth rate and (ii) the duration of the exponen-
tially growing phase. In the next Section, we verify it by changing geometrical parameters such
as aspect ratio A, ellipticity κ, triangularity δ, and position of X-point.

3 Improved Stability by Geometrical Effects

3.1 D-shaping and Aspect Ratio

First, we change the ellipticity and triangularity while keeping the magnetic curvature at the
outer side of the torus unchanged. This means the driving force of ballooning modes; i.e., the
product of the pressure gradient and the magnetic curvature, is held constant. Figure 3 shows
the time evolution of ‖ξ2

⊥‖ for circular cross-section and D-shaped tokamaks. The aspect ratio is
A = 3 and the flow shear is Ω′τA = −0.03. The instantaneous growth rate at the exponentially
growing phase is almost the same for the two equilibria. Here, αp = 1.8 for the circular cross-
section, and αp = 3.8 for the D-shape. These equilibria are located near the first stability
boundary in the S –α diagram. Thus if αp is the same, the instantaneous growth rate is smaller
in the D-shaped tokamak plasma. The reason is known as the increase of the good curvature
region. As for the duration of the exponentially growing phase, we found that it is shorter for
the D-shape, since the good curvature region is wider than that for the circular cross-section.
This leads to enhancement of the stabilization effect of the flow shear.

Figure 4 shows the critical pressure gradient αcrit
p as a function of triangularity δ. To keep the

magnetic curvature at the outer side of the torus unchanged, κ and δ are changed simultaneously;
(κ, δ)=(1,0), (1.2,0.2), (1.4,0.4), and (1.6,0.6). We found, from Fig. 4, that the increment of
αcrit

p due to the flow shear increases as δ. Therefore, the D-shaping not only raises the critical
pressure gradient of ballooning modes in a static plasma, but also enhances the stabilization
effect of toroidal flow shear. This is favorable for tokamaks aiming at high beta.

Next, we change the aspect ratio. As in the case of D-shaping, the reduction of the aspect ratio
increases good curvature region on a magnetic field line. In Fig. 5, the critical pressure gradient
αcrit

p is shown as a function of A. As A is reduced, αcrit
p increases in both static and rotating

plasmas. The increment of αcrit
p due to the flow shear also increases as A is reduced. Thus the

reduction of A is favorable to achieve high beta plasmas.
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FIG. 3. Time evolution of ‖ξ2
⊥‖ for circular

cross-section and D-shaped tokamaks. The
time duration of the exponential growth is
shorter for the D-shaped tokamak. The in-
stantaneous growth rate at the exponential
growth is almost the same, although αp is sig-
nificantly larger for the D-shaped tokamak.

1.5

2

2.5

3

3.5

4

4.5

5

5.5

1 1.2 1.4 1.6
0 0.2 0.4 0.6

κ
δ

w/o flow

α
pcr

it

=-0.03AτΩ

Stabilized by 
toroidal shear flow

A=2
=3sm

D-shaping

FIG. 4. Sheared toroidal rotation raises
the critical pressure gradient αcrit

p . The in-
crease of αcrit

p becomes more remarkable by
D-shaping, which is favorable for tokamaks
aiming at high beta.

3.2 Position of X-point

It is known that a magnetic field line stays for much of its length in the vicinity of the X-point,
and the local shear is divergent. Therefore ballooning/interchange stability was studied for
model [17] and JT-60U [18] equilibria with an X-point, and it was shown that an X-point at the
outer side of the torus does not change first stability boundary significantly [18].

In the present paper, we include a toroidal shear flow, since the mechanism of stabilization of
ballooning modes by the flow shear is closely related to the magnetic configuration. We have
examined ballooning stability of two extremely different equilibria; one has an X-point at the
inner side of the torus, and the other has at the outer side. The aspect ratio of both equilibria
is A = 10 and the beta is very low, thus the cross-sectional shape is nearly circular except for
the region close the separatrix. These are not realistic, however, the difference of magnetic
configuration due to the X-point is magnified.

We show the growth rate γτA as a function of flow shear Ω′τA in Fig. 6. The growth rate
without a flow is 0.2 for both equilibria. In the equilibrium with inside X-point, the ballooning
mode is stabilized by a smaller Ω′τA than in the equilibrium with outside X-point. We have
also calculated αcrit

p and its increase by a flow shear (Ω′τA = −0.03) for the separatrix equilibria,
however, the first stability boundary is not affected largely. The reason is conjectured as follows.
In a static equilibrium, growth rate of ballooning mode becomes significantly large at αp slightly
larger than its marginal value around the first stability boundary. Thus a small flow shear cannot
affect its growth significantly.

4 Conclusions

We have clarified the mechanism of stabilization of high-n ballooning modes by toroidal flow
shear numerically. Damping phases appear in the time evolution of the perturbation. The damp-
ing dominates the exponential growth in the bad curvature region, which leads to the stabiliza-
tion of the ballooning modes. D-shaping and reduction of aspect ratio enhance the stabilization
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FIG. 6. Growth rate γτA is plotted as a
function of flow shear Ω′τA. The flow shear
required to stabilize the ballooning mode is
smaller for the equilibria with an inside X-
point than that for the outside one.

effect of toroidal shear flow through this mechanism, as well as raise the critical pressure gra-
dient in a static plasma. In the equilibrium with inside X-point, the flow shear required to
stabilize the ballooning mode is smaller than in the equilibrium with outside X-point. However,
the critical pressure gradient is not largely changed by the modest flow shear.
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