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Abstract. We have used the resistive pressure gradient driven instability model to study the effect
of plasma on a vacuum magnetic field island. We have studied under what conditions the island is
amplified or reduced. Starting with a set of reference parameters, we have varied these parameters
by increasing either the density or the electron temperature. These scans lead to very different
results. When beta increase because of the increase in density so does the island width. However, in
the case that beta is increase by increasing the electron temperature, we observe a decrease in the
island width. The main mechanism for island reduction seems to be the generation of strong
sheared flow associated with the magnetic island. These results seem to reflect some observations
in the LHD device.

1. Introduction

Vacuum magnetic field islands in stellarators can impact plasma confinement in different
ways.  Large vacuum magnetic field islands can cause a serious degradation of the confinement
and if they are large enough even render a device useless as a plasma confinement experiment.
However, if the vacuum magnetic field islands are small, they can improve the plasma stability
by causing local flattening of the pressure profile at the rational surfaces [1,2]. Magnetic islands
can also improve confinement by amplification of local shear flows [3]. The presence of a small
vacuum magnetic field island induces a symmetry breaking effect that allows shear flow
amplification through Reynolds stress. It is even possible to consider that such sheared flow
amplification can lead to the creation of a transport barrier. Therefore such magnetic islands can
be used as external knobs to control stability and confinement properties of the plasma.

Since the size of the islands is critical to having a positive or negative effect on confinement,
it is important to understand how the vacuum magnetic field islands are affected by the presence
of the plasma and under what conditions they are amplified or reduced. In the Large Helical
Device (LHD) plasma discharges, it has been observed that the size of an externally imposed
island with mode number (m = 1, n = 1) changes with beta and collisionality in a nontrivial way
[4, 5].

In this paper, we explore a possible mechanism for changing size of vacuum magnetic field
island by the plasma. This mechanism consists of the coupling of the vacuum-field island with
resonant resistive interchange mode instabilities. Numerical calculations using reduced
magnetohydrodynamical (MHD) equations have shown that both amplification and reduction of
the island size are possible.

2. Resistive pressure gradient stability model

 The basic model used in studying the nonlinear interaction of the plasma with the vacuum
magnetic field islands is the reduced MHD equations. This set of equations is based on the



averaging method applied to stellarator geometry [6]. Because of the different effects of the
vacuum islands on temperature and density transport, we consider separate equations for the
evolution of the plasma density and temperature. The detailed version of the present model has
been discussed in Ref. [3].  The geometry of the system is a periodic cylinder with minor radius
a and length L0 = 2πR0. The model is described by the following equations; the poloidal
magnetic flux evolution equation:
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the electron density evolution equation:
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and the electron temperature evolution equation:
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Here, κ is the averaged magnetic field line curvature, v⊥  is the perpendicular flow velocity, U is
the z-component of the vorticity, ψ is the poloidal magnetic flux function, J Rz = ∇⊥

2
0 0ψ µ  is

the parallel current, η is the resistivity, and ρm is the mass density. In Eqs. (1)-(4), a tilde
identifies perturbed quantities, and the subindex eq identifies equilibrium quantities.

The evolution equations of the averaged electron density and temperature profiles are
obtained by flux-surface averaging of Eqs. (3)-(4). The poloidal flow profile evolution equation
is derived by taking the flux surface average of Eq. (2). In this equation, we assume that the
dissipative term is −ρ µm Uˆ . That is, the dissipation is caused by a drag instead of diffusion,
and is due to magnetic pumping.
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Fig. 1. Radial profiles of equilibrium
density and electron temperature.

Fig. 2. Radial profiles of rotational transform
and averaged magnetic field line curvture.



In the numerical calculations, we use a rotational transform, averaged magnetic field line
curvature, density and temperature profiles that correspond to a shifted-in LHD configuration.
These profiles are plotted in Figs. 1 and 2. The nonlinear evolution calculations are single
helicity 1/1 calculations. We have included 30 poloidal components, from m = 1 to m = 30 and
we have taken into account both parities. The radial grid resolution is ∆r/a = 10–3. The vacuum
island is introduced through a non-zero boundary condition for the (m = 1, n = 1) component of
the poloidal flux.

Because of the computing capability limitations, the values of the Lunquist number and the
parallel electron conductivity are one order of magnitude smaller than the experimental values.
For the reference case (case 1 in Table I), the Lunquist number, S = τR/τhp, is 2×105, β0/2ε2 =

0.05, the diamagnetic frequency, ω*e eqT e a B= ( )0 2
0 , is 4×10–4τ hp

−1, the diffusivity coefficients

are D⊥  = χ⊥ = µ  = 0.125 a2/τR, and the parallel electron heat conductivity, χ τ|| .= 3 2T me e e ,

is χ τ|| = 106 R R0
2 . Here, τ µ ηR a≡ ( )2

0 0  is the resistive time and τ µ ρhp mR B≡ 0 0 0  is the

poloidal Alfvén time. The collisional flow damping rate, µ̂ , is 2×10–5νe for all cases considered.

Calculations have been done for different values of the peak density and temperature. These
values have been increased by factors up to 4 times the standard case. In doing so, all
parameters listed above have been rescaled by the corresponding factors through their
dependence in temperature and density.

3. Effect of beta and collisionality on the vacuum magnetic field island

As we have shown [3], there is a poloidal rotation of the magnetic island when the imposed
vacuum magnetic island is small. As the vacuum magnetic island increases for fixed value of the
plasma parameters, the rotation stops and changes to an oscillatory behavior in the poloidal
direction. This oscillation is around a given poloidal position and has quasiperiodic character. If
we keep the vacuum magnetic island fixed and we vary the plasma parameters, for low values
of the density and high temperature, there is no poloidal rotation of the island. However, as the
density increases at low temperatures, the island first oscillates in a quasiperiodic way and at
even higher density values there is full poloidal rotation of the island. We can expect the
maximum nonlinear interaction between the vacuum island and the plasma instability in the
regime where the island does not rotate. All cases considered in this paper are in this regime.

In the present numerical calculations, we have used two different values for the (m = 1, n =
1) component of the vacuum poloidal flux at the boundary, ψb = 5×10–4 and 1.28×10–3; the
corresponding  vacuum  magnetic  island  widths are Wvac = 0.05a and 0.08a.  For each value of

TABLE I

Case Density
factor

Temperature
factor

β0/2ε2 S

1 1 1 0.05 2×105

2 2 1 0.10 1.41×105

3 4 1 0.20 105

4 1 2 0.10 5.66×105

5 2 2 0.20 4×105
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Fig. 3. Shear flow at the singular surface q = 1
vs. S for all cases considered in this paper.

Fig. 4. Radial profile of the poloidal flow for
cases 2 (solid line) and 4 (broken line) with
ψb = 5×10–4

ψb, and starting from the reference case, we have increased the density and/or the electron
temperature by the factors listed in Table I. In the same table we list the corresponding values of
β and S.

The increase of temperature causes a decrease in collisionality and as a consequence there is
an increase on the level of shear flow over the magnetic island. From this perspective, we can
identify two regimes: 1) a low S regime with low sheared flow and 2) a high S regime with
strong sheared flow. This correlation between S and shear flow level is shown in Fig. 3. As
shown in Fig. 4 and for these two regimes, the sheared flow profile does not change much. It is
essentially the level of the sheared flow that changes.

For the low sheared flow regime, when beta increases because of the increase in density so
does the island width. This is shown in Fig. 5 for six different calculations corresponding to
cases 1 to 3 in Table I and for the two values of the vacuum magnetic field island. However, in
the high sheared flow regime, this shear flow not only causes a reduction in the level of plasma
fluctuations [7], but also a reduction in the magnetic island width, even below the vacuum
magnetic island size. This second regime corresponds mostly to increasing beta by increasing
the electron temperature. This result is shown in Fig. 6, for the cases 4 and 5 of table I and for
the two values of the vacuum magnetic field island.
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Fig. 5. Normalized width vs. local pressure
gradient for cases 1 to 3.

Fig. 6. Normalized width vs. local shear flow
for cases 4 and 5.



The change on the island size, even if it
is small due the short range of values of
temperature and density variation, is real.
We can see that in Fig. 7, where we have
plotted the (m = 1, n = 1) component of the
poloidal flux function for a case of
enhancement and a case of reduction of the
magnetic island. There is a clear change of
the value of the poloidal flux at the resonant
surface.

4. Conclusions

The coupling of a vacuum magnetic
field island with a resonant resistive
interchange mode can cause important
changes in the measured island size. For high β and high collisionality, the sheared flow
damping is important and the main effect is an increase in the island size induced by β .
However, at low collisionality, we have a decrease of the poloidal flow damping term.
Therefore, the sheared flow associated with the magnetic island increases and this increase
caused a reduction of the overall magnetic island size.

These two different ways of modifying the vacuum magnetic island by the plasma can
be easily carried out in experiment by increasing β in two different ways, through increase of
the density or through increase of the electron temperature. These results are consistent with the
observation in the LHD experiment described in Ref. [5]. Further exploration of the high
temperature, high β regime would be desirable, but this is still limited by computational
capabilities.
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Fig. 7. Radial profile of the (m = 1, n = 1)
component of the poloidal flux function for
cases 2 and 4 with ψb = 5×10–4


