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Abstract: A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii
magnetohydrodynamic equations of ions. The safety factor q  in a toroidal plasma is introduced into
the model through the current density //J . The effects of q  or //J  on both the ITG instability in

⊥k  and //k  spectra and the critical stability thresholds are studied. It is shown that the current density

//J  or the safety factor q  plays an important role in stabilizing the ITG instability.

In the previous models [1, 2] for the ion temperature gradient (ITG) driven instability, the
safety factor )(rq  is introduced into the model through the wavenumber or relative derivative,
such as rrlqk /)(=θ  and θ∂∂==∇ − /)( 1

//// Rqik . Since the safety factor does not directly
stem from the current density, it cannot fully and realistically describe the roles of the current
density or safety factor in the ITG mode stability. Hence, in this work we directly introduce
the safety factor into the present model equations from the parallel current density and study
the dependence of ITG mode stability on the current density or safety factor. In the present
model, an important physical quantity, //

1
//// )(71.0)(71.0 JkVVk ⋅=−⋅= −

eeiJ enω , involves
the scalar product of the wave vector k  and the relative motion of ion and electron fluid
velocity ( ei VV − ), or equivalently, that of the wave vector k  and the current density //J ,
and is expressed as [3]
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where )/(71.0 //
1

⊥
−= kkqbq ε , eepe ** )1( ωηω += , and iipi ** )1( ωηω += . Jω , including the

parallel current density or the safety factor, will be incorporated into the following model
equation.
     From the Braginskii magnetohydrodynamic equations of ions [4] and the adiabatic
electron response eee Tenn // δφδ =  along with quasi-neutrality iiee nnnn // δδ = , we derive
the dispersion relation for the ITG instability
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where γir +Ω=Ω , 2)( ii kb ρ⊥−= , eeffi TZT /=τ , and Jω  is given by Eq. (1). From Eqs
(1) and (2), we see that Jω  describes the effects of //J  or q on the ITG instability. In the
limiting case of 0=⊥k , the solution of Eq. (2) for Ω  is a stable mode

)(71.0 **//
1

pipeJ VVkq −==Ω −εω .                     (3)
When ⊥k  is finite, we get the unstable solution of Eq. (2) after all frequencies are normalized
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to e*ω

eirere ii *** /)(/)(/ ωγωωγω +⋅−=+Ω=Ω Vk ,            (4)
where

, /)21(3/)/1(10)1()1()/1(2 222
*

AAbbA nneqiq
e

r ετττεηηττ
ω

−++−+++++=
Ω  (5)

2/12
*21* ])/2()/(4[/2 ere AA ωωγ Ω−= ,                (6)

with

,  3/)1(20)21()1()1(          

]3/)206()21)(1()1([)1()1(

2

223
1

−++−+++×

−+−++++++=

nnnneqi

nnqeqiq

b

bbbA

ετεετετηη

τετεηητ
    (7)

ibA −= τ2 , and Rdrndn /)/ln(−=ε .
If 0// =k , Eqs (4–6) give an unstable mode without the q or //J  effect. For finite values of

⊥k  and //k , the term qb  in Eqs (4–6) or Jω  describes the interaction between the unstable
mode and the stable one ( Jω=Ω ), which is the essence of the q or //J  effect. Such a
function of Jω  is similar to the BE×  shearing rate BE×ω [5], which can lead

Fig. 1. e*/ωγ  versus ik ρ⊥  for 5.1=q , 10, and
40 when 001.0// =ik ρ , 2.0=nε , 1=τ , 2.0=ε ,

0=eη , and 5.1=iη .

Fig. 2. e*/ωγ  versus ik ρ//  for 5.1=q , 2.5, and
3.5 when 3.0=⊥ ik ρ . The other parameters are
the same as in Fig. 1.

to the coupling between the unstable mode and stable one. In Fig. 1, we show the growth rate
e*/ωγ  versus ik ρ⊥  for different q values. The long wavelength instabilities in the ⊥k

spectrum are suppressed by the q or //J  effect, and the short wavelength instabilities
( 92.0≥⊥ ik ρ ) are suppressed by the finite Larmor radius effect. In addition, the q or //J
effect also suppresses the instabilities with larger wavenumber //k , as shown in Fig. 2. The
growth rate versus ik ρ⊥  is shown in Fig. 3 for different values of nε . When nε  is very
small, there are two discrete unstable regions in the perpendicular wavenumber spectrum. One
is in the long wavelength region, 210~ −

⊥ ik ρ  or 210−< . Another is in the short wavelength
region, 3.0~ik ρ⊥  to 0.8. When nε  is large enough, however, the instabilities in the short
wavelength region are suppressed.
    Setting the growth rate 0=γ  from Eq. (6), we can obtain the critical stability threshold
equation of the ITG mode,
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0)/2()/(4 2
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This is a quadratic equation in iη  and q . Hence, in the present model, there are two stability
thresholds for iη  and q, i.e. 1icη  and 2icη , and 1cq  and 2cq  (generally 1icη << 2icη  and

1cq << 2cq ). As a result, each of iη  and q  has two stable parameter regimes. They are,
respectively, 1ici ηη ≤  and 2ici ηη ≥ , and 1cqq ≤  and 2cqq ≥ . Correspondingly, each of iη
and q  has an unstable parameter regime between the two stable regimes, i.e. 21 iciic ηηη <<
and 21 cc qqq << . In order to study the critical stability thresholds of iη , we substitute Eq. (7)
into Eq. (8) and rewrite Eq. (8) as
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Fig. 3. Normalized growth rate versus ik ρ⊥  for
different nε  when 5.1=q  and 3.0=⊥ ik ρ .
The other parameters are the same as in Fig. 1

Fig. 4. 1icη  and 2icη  versus  q  for 2.0=nε ,
0.5, and 0.8 when 3.0=⊥ ik ρ . The other
parameters are the same as in Fig. 1.
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Thus, the two thresholds of iη  for the critical stability of the ITG mode are, respectively,
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Here, both 1icη  and 2icη  decrease with the increase of the safety factor q. When q is large
enough, 1icη  goes through zero and then is negative. In this case, however, 2icη  reduces from
over one hundred to the typical iη  parameter regime of tokamaks, i.e. 100 2 <≤ icη , as is
shown in Fig. 4. It is interesting that, under the specific condition of the parameters, i.e.

20
2
1 4 yyy = , 21 icic ηη = . That is, the unstable regime 21 iciic ηηη <<  vanishes and thus the

mode is stable without any iη  threshold. Here it should be pointed out that we have not
found a typical parameter regime of tokamaks in which q , nε , τ , and ε , independently of
each other, satisfy the condition. Similarly, Eq. (8) can be rewritten as
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Then we obtain the two thresholds of q , which are, respectively,
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In particular, when the parameters satisfy the following condition
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21 cc qq = . Thus, the unstable q parameter
regime vanishes and the mode is stable
for any value of q . This situation is
shown in Fig. 5, where 11521 == cc qq
when 8.1≥nε . Usually ion internal
thermal transport barriers are observed in
reversed shear plasmas. However, there
are regimes, such as the high- pβ  H-
mode [6], for which the profile of
reversed shear is not present but for
which an ion core transport barrier
certainly forms. The present theoretical
result should be a possible scenario to
explain the experiment of the high- pβ
H-mode.
    In summary, the parallel current
density or the safety factor is introduced
into the present model. Its effects are to
suppress both the longer wavelength
mode in the ⊥k  spectrum and the shorter
wavelength mode in the //k  spectrum. In
addition, it is shown that there exist two

critical stability thresholds of both iη  and q. They correspond to two stable regimes and one
unstable regime between the two stable ones. The first stable regime is in the typical
parameter range of present day tokamaks.
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Fig. 5. 1cq  and 2cq  versus nε  for 5.0=τ ,1,and
1.5 when 3.0=⊥ ik ρ . The other parameters are
the same as in Fig. 1.
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