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Abstract: A model for the ion temperature gradient (ITG) driven instability is derived from Braginskii
magnetohydrodynamic equations of ions. The safety factor ( in atoroidal plasma is introduced into

the model through the current density J, . The effects of q or J, on both the ITG instability in
k, and k, spectraand the critical stability thresholds are studied. It is shown that the current density
J, or the safety factor q plays an important role in stabilizing the ITG instability.

In the previous models [1, 2] for the ion temperature gradient (ITG) driven instability, the
safety factor q(r) isintroduced into the model through the wavenumber or relative derivative,

suchas k, =lq(r)/r and V, =ik, = (Rq)"0/080 . Since the safety factor does not directly

stem from the current density, it cannot fully and realistically describe the roles of the current
density or safety factor in the ITG mode stability. Hence, in this work we directly introduce
the safety factor into the present model equations from the paralel current density and study
the dependence of ITG mode stability on the current density or safety factor. In the present

model, an important physical quantity, o, =0.7k -(V,, —V,,) =0.71(en,) 'k - J,, involves
the scalar product of the wave vector k and the relative motion of ion and electron fluid
velocity (V, —V,), or equivalently, that of the wave vector k and the current density J,,
and is expressed as [ 3]
=0.710e "'k, (Ve pe —Vapy) for thelimiting caseof k, =0,
O’J{z by (@0 — . 3) for afinitevalueof k,

(1)
where b, =0.710e (k, /k,), ., =[@+n,)0.., ad o.; = (1+n;)o, . o,, incuding the

parallel current density or the safety factor, will be incorporated into the following model
equation.

From the Braginskii magnetohydrodynamic equations of ions [4] and the adiabatic
electron response dn,/n, =ed¢ /T, along with quasi-neutralitydn, /n, =dn, /n,, we derive
the dispersion relation for the ITG instability

[(@p —0. +BQ)(Q+0.,; —0; —100y /3) + o4 (5o /3-0., +50,Q/3)]
=1[(Q+0.,)(Q+0.,;, —o, —100,, /3) +505 /3],
where Q=Q +iy, b =-(k, p;)?, 1 =T,/Z4T,, and o, is given by Eq. (1). From Egs
(1) and (2), we see that o, describes the effects of J, or g on the ITG instability. In the
limiting case of k, =0, the solution of Eq. (2) for Q isastable mode
Q=0, =0.71ge 'k, (V. . — Vi) - (3)
When k|, isfinite, we get the unstable solution of Eq. (2) after all frequencies are normalized

(2)
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to .,
Qlo., =(Q, +iy) 0. = (@ —K-V, +iy)/o.,, ()
where
222 _ (L41/ A, +b ) (Len,) +b, (Ln,) 10, (14T / A)/3+T(L-2¢,)/ A, , (5)
2y lo. =[HAA)—-(2Q, l0..)*1"?, (6)
with

A =1+ bq)ra(1+ni)2 +[b, (1+n,) + (L+b,) A~ 2¢ )+ (6-20)e,, /3t?
(7)
x (1+m;) +b,@A+n)r(1-2¢,)+ 200 e (e, +¢,-1/3,

A, =t-Db,and ¢, =—(dinn/dr)/R.
If k, =0, Egs (4-6) give an unstable mode without the q or J, effect. For finite values of
k, and k,, theterm b, in Egs (4-6) or o, describes the interaction between the unstable
mode and the stable one (2 =w, ), which is the essence of the g or J, effect. Such a
function of o, issimilar tothe ExB shearing rate o, [5], which can lead
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Fig. 1. y/o., versus k p; for q=15, 10, and Fig. 2. y/o., versus k,p; for gq=15, 2.5, and
40 when k;p; =0001, &,=02, t=1,6=02, 3.5 when k p =03. The other parameters are
ne=0,and n;=15. the same asin Fig. 1.

to the coupling between the unstable mode and stable one. In Fig. 1, we show the growth rate
v lo., versus k, p, for different q values. The long wavelength instabilities in the k;

spectrum are suppressed by the q or J, effect, and the short wavelength instabilities
(k, p; 20.92) are suppressed by the finite Larmor radius effect. In addition, the q or J,
effect also suppresses the instabilities with larger wavenumber k,, as shown in Fig. 2. The
growth rate versus Kk, p, is shown in Fig. 3 for different values of ¢,. When ¢ is very

small, there are two discrete unstable regionsin the perpendicular wavenumber spectrum. One
isin the long wavelength region, k, p, ~107 or <107*. Another isin the short wavelength

region, k, p, ~0.3 to 0.8. When ¢, is large enough, however, the instabilities in the short

wavelength region are suppressed.
Setting the growth rate y = 0 from Eq. (6), we can obtain the critical stability threshold

equation of the ITG mode,
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Fig. 3. Normalized growth rate versus k, p; for Fig. 4. n,, and m;,, versus q for ¢,=02,
different ¢, when g=15 and k, p; =0.3. 0.5 and 0.8 when k. p;=03. The other
The other parameters arethe same asin Fig. 1 parameters arethe same asin Fig. 1.
4A It -b)-(2Q, lo.,)* =0. (8)

Thisisaquadratic equationin n, and . Hence, in the present model, there are two stability
thresholds for n, and q, i.e. n,, and n,,, and q, and q., (generally n,,<<n,, and
0,<<0.)- As aresult, each of n, and g has two stable parameter regimes. They are,
respectively, n, <n,, ad n, 2n,,, and g<q, and q=q.,. Correspondingly, each of n,
and q has an unstable parameter regime between the two stable regimes, i.e. n,,, <N, <Nie,
and g, <g<4(,.Inorderto study thecritical stability thresholds of n,, we substitute Eq. (7)
into Eq. (8) and rewrite Eq. (8) as

Y, (14+n)* +y,(1+n) + Y, =0, (9a)

where
y, =[2t b +bq(r—bi)]212—4(r—bi)(1+bq)r3, (9b)
Y1 =2t[2t —b +Db,(t -b)][b, —b)(A+n,)-10re ,(2r —b)/3
+1(1-2¢,)] -4 -b)[b,(1+n,) + (1+b,)1-2¢,) (9)

+2¢,(3-10c) /3 %,
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Yo =[by(x —B)(X+n,) ~10te,, (2 b))/ 3+t (1-2,)]?
(9d)
—4(t —b)[b,(L+n.)r(1-2¢,) + 20 e (te, +e,-1)/3].

Thus, the two thresholds of n, for the critical stability of the ITG mode are, respectively,
Nicx = (2y2)71[_y1 -2y, - (3/12 - 4y0y2)1/2] ) (109)

Nic2 = (2y2)_1[_y1 -2y, + ()/12 - 4YOYZ)1/2] . (10b)

Here, both n,, and n,, decrease with the increase of the safety factor g. When q is large
enough, m,., goes through zero and then is negative. In this case, however, n,., reducesfrom
over one hundred to the typical n, parameter regime of tokamaks, i.e. 0<n,, <10, asis

shown in Fig. 4. It is interesting that, under the specific condition of the parameters, i.e.
Y2 =4Y,Y,, Ny =Niep- That is, the unstable regime n,, <n, <n,., vanishes and thus the

mode is stable without any r, threshold. Here it should be pointed out that we have not
found atypical parameter regime of tokamaksin which ¢, ¢,, t,and ¢, independently of

each other, satisfy the condition. Similarly, Eq. (8) can be rewritten as
z,9°+20+2,=0, (114)

where
z,= (0.7 7'k, 1k, )*(t = b)) @+n,) + @+n,)]%, (11b)
7, =142 71 (k, 1k )[x @+n,) + @+ )l[(2 b ) @+n,) +1(1-2¢,)

—10te (20 b)) /3] -2.84 7 (k, [k )t *(Q+n,)* +1*(L+n,)A+n,) (1lc)

+12(0+m)1-2¢,) +1 L+, )1 2¢,)],

Zy=[(2 b )t (@+n,)+1(1-2¢,)-10e (2 -b)/3* -4
x[(@+m,)°t° +(@+n,)r %, (6—20t)/3+ (1+m, )t *(1-2¢,) (11d)

20t %, (e, +¢, —1)/3).
Then we obtain the two thresholds of g, which are, respectively,
Qe = (222)_1[_21 - (212 - 42022)1/2] ) (123)

Qe = (222)71[_21 + (212 - 42022)1/2] . (12b)

In particular, when the parameters satisfy the following condition

z’ =4z,z,, (13)
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J. = ., Thus, the unstable q parameter

regime vanishes and the mode is stable
e for any value of g. This situation is

ot ’ shown in Fig. 5, where g, =q,, =115
< ’ when ¢ >1.8. Usualy ion internal
00p thermal transport barriers are observed in
//'\ reversed shear plasmas. However, there
‘ ‘ , are regimes, such as the high-8, H-

200 s mode [6], for which the profile of

10k ____.-,-:""' reversed shear is not present but for

which an ion core transport barrier
certainly forms. The present theoretical
result should be a possible scenario to
explain the experiment of the high-

H-mode.

‘ ‘ ‘ In summary, the parallel current

1 2 3 4 density or the safety factor is introduced
‘a into the present model. Its effects are to

suppress both the longer wavelength

modein the k; spectrum and the shorter

wavelength mode in the k,, spectrum. In

addition, it is shown that there exist two
critical stability thresholds of both n;, and g. They correspond to two stable regimes and one

unstable regime between the two stable ones. The first stable regime is in the typical
parameter range of present day tokamaks.
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Fig.5. g4 and g, versus ¢, for +=05,1,and
1.5when k, p; =0.3. Theother parametersare
thesameasin Fig. 1.
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