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Abstract. The transport of collisional particles in stochastic magnetic fields is studied using the decor-
relation trajectory method. The nonlinear effect of magnetic line trapping is considered together with
particle collisions. The running diffusion coefficient is determined for arbitrary values of the statistical
parameters of the stochastic magnetic field and of the collisional velocity. New diffusion regimes are
found in the conditions for which the trapping of magnetic field lines is effective.

1. Introduction

The problem of anomalous transport induced by the presence of a stochastic magnetic field in a
tokamak plasma is studied in the framework of the test particle approach. It is already known
that particle collisions have a very strong influence on the effective diffusion [1]. Interacting
with diffusion of magnetic field lines, the collisions can determine, depending on the specific
conditions, either a much enhanced diffusion (Rochester-Rosenbluth regime) or a subdiffusive
cross-field particle transport. Although there are some estimations and even an exact solution
for a particular case, this complex process is not completely understood [2]. On the other hand,
the diffusion of the magnetic field lines is influenced by the nonlinear process of magnetic line
trapping. This trapping process was recently analyzed by means of the decorrelation trajectory
method developed in [3]. It was shown that it leads to the decrease of the diffusion coefficient
of the magnetic lines and to the change of its scaling law. A realistic description of particle
diffusion that includes both particle collisions and magnetic line trapping was not performed
until now. This process is studied in this paper using the decorrelation trajectory method [3],
[4] which is extended to this much more complicated problem. We show that the interaction of
these two nonlinear processes determines new anomalous diffusion regimes.

2. Solution by the decorrelation trajectory method

We consider a magnetic field B = B0 (ez +b(x,z, t)), where the confining magnetic field B0 =
B0ez is directed along z axis (slab geometry) and the small stochastic component b(x,z, t) is in
the plane x =(x,y) perpendicular to B0. Since the magnetic field is divergence-free, ∇ ·b = 0, its
two components can be determined from a scalar function φ(x,z) as b(x,z, t) = ∇×φ(x,z, t)ez.
The system of equations for guiding center motion is:

dx
dt

= b(x,z, t)η‖(t)+η⊥(t),
dz
dt

= η‖(t). (1)

The three stochastic functions b(x,z, t), η⊥(t) and η‖(t) are statistically independent: all cross
correlations are zero. All these stochastic functions are assumed to be Gaussian, stationary and
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homogeneous, with zero averages. The Eulerian correlation (EC) of the stochastic potential
φ(x,z, t) is modeled by:

A(x,z, t)≡ 〈φ(0,0,0)φ(x,z, t)〉= β2λ2
⊥ exp

(
− z2

2λ2
‖
− x2 + y2

2λ2
⊥

)
exp

(
−|t|

τc

)
(2)

where 〈...〉 is the average over the realizations of the stochastic potential φ, β is the mean square
value of the reduced magnetic field b, λ‖ is the correlation length of the potential φ along the
main magnetic field B0, λ⊥ is the correlation length in the plane perpendicular to B0 and τc is
the correlation time of φ. The autocorrelation tensor of the reduced magnetic field components
Bi j ≡

〈
bi(0,0,0)b j(x,z, t)

〉
, i, j = x,y, is determined from A(x,z). The collisional velocities

η⊥, η‖ are modeled by colored noises with the correlations〈
η‖(0)η‖(t)

〉
c
= χ‖νR(νt),

〈
ηi
⊥(0)η j

⊥(t)
〉

c
= δi jχ⊥νR(νt) (3)

where 〈...〉c is the average over the collisional velocity realizations, ν is the collision fre-
quency, χ‖ = λ2

m f pν/2 is the parallel collisional diffusivity, λm f p is the parallel mean free path,

χ⊥ = ρ2
Lν/2 is the perpendicular collisional diffusivity, ρL is the Larmor radius relative to the

reference field and R(νt) = exp(−ν |t|).
Four dimensionless parameters appear naturally in this problem:

χ⊥ ≡ χ⊥
λ2
⊥ν

, χ‖ ≡
χ‖

λ2
‖ν

, M =
V

λ⊥ν
=

βλ‖
λ⊥

χ1/2
‖ , τc = τcν. (4)

They describe respectively the perpendicular and parallel diffusivities, the effect of the stochas-
tic magnetic field and the dimensionless decorrelation time. The parameter which describes the
evolution of the magnetic lines, the magnetic Kubo number Km = βλ‖/λ⊥, appears here as a

factor in M, which can be written as M = Km

√
χ‖.

We use the decorrelation trajectory method following the recent calculations for the influ-
ence of particle collisions on the diffusion in electrostatic turbulence [4]. The difference and
the supplementary difficulty of the magnetic problem comes from the structure of the velocity
v = b(x,z, t)η‖(t) which is the product of two stochastic processes. They are statistically in-
dependent but in the Lagrangian frame they are correlated through the trajectories, due to the
space dependence of the magnetic field fluctuations. The latter makes this problem strongly
nonlinear. The trajectories also depend on the collisional velocity η⊥ and the velocity v is thus
a triple stochastic process in the Lagrangian frame. The calculations evolve according to the
following steps.

1) We make the change of variable x′(t) = x(t)−ξ(t) in Eq.(1), which introduces the colli-
sional displacements ξ(t) =

R t
0 η⊥(τ)dτ in the argument of the magnetic field fluctuations. The

Eulerian correlation of φ̃(x,z, t) ≡ φ [x+ξ(t),z, t] is calculated as in [4] and the average effect
of the perpendicular collisional velocity η⊥(t) is determined. It consists of the modification of
the EC of the magnetic potential (2) by introducing a supplementary time-dependence in addi-
tion to the one determined by the finite correlation time of the stochastic magnetic field. The
effect of collisions consists in progressively smoothing out the EC of the magnetic potential and
in eliminating asymptotically its x-dependence.

2) We define a set of subensembles S of the realizations of the stochastic functions that have
given values of the potential φ̃, of the magnetic field b̃ and of the parallel velocity η‖ in the

point x = 0, z = 0 at time t = 0 : φ̃(0,0,0) = φ0, b̃(0,0,0) = b0, η‖(0) = η0. The correlation of
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the Lagrangian velocity can be represented by a sum over the subensembles of the correlations
appearing in each subensemble, weighted by the known probability P

(
b0,φ0,η0

)
of having

b0,φ0,η0 at x = 0, z = 0 and t = 0. The subensemble average Eulerian velocity VS(x, t) ≡
〈v [x,z(t), t]〉S =

〈
b [x,z(t), t]η‖(t)

〉
S

is determined.
3) The next step in the decorrelation trajectory method consists to find a deterministic tra-

jectory XS(t) in each subensemble S as the solution of the equation

dXS

dt
= MVS(XS, t) (5)

with XS(0) = 0. The average Lagrangian velocity is estimated as in [4] by the average Eulerian
velocity along this decorrelation trajectory 〈v [x(t), t]〉S

∼= VS
[
XS(t), t

]
.

We finally obtain the running diffusion coefficient for arbitrary values of the four dimen-
sionless parameters (4) and for given Eulerian correlations of the three stochastic processes that
combine in the equations of motion (1). It is the sum of two terms: a direct contribution of the
collisional velocity η⊥ and the contribution of the stochastic magnetic field:

D(t;M,χ‖,χ⊥,τc) = χ⊥ (1− exp(−νt))+(νλ2
⊥)Dint(t;M,χ‖,χ⊥,τc). (6)

Dint(t;M,χ‖,χ⊥,τc) =
M
2π

Z ∞

0
dp

Z ∞

0
db b3 exp

(
−b2

2
(p2 +1)

)Z ∞

−∞
dη0η0 exp

(
−η02

2

)
XS(t)

(7)
where XS(t) is the component along x axis of the solution of Eq.(5). It depends on the parame-
ters M, χ‖, χ⊥ and τc as well as on the shape of the Eulerian correlations. This contribution (7)
results from the nonlinear interaction of the three stochastic processes. The asymptotic diffusion
coefficient is

D(M,χ‖,χ⊥,τc) = (νλ2
⊥)
[
χ⊥ +Dint(M,χ‖,χ⊥,τc)

]
(8)

where Dint(M,χ‖,χ⊥,τc) is the limit for t → ∞ of Dint(t;M,χ‖,χ⊥,τc).
A computer code that calculates the running diffusion coefficient starting from the analytical

expression (7) has been developed. It determines the decorrelation trajectories (5) for a large
enough number of subensembles and performs the integrals in Eq.(7). The code was tested and
the parameters in the numerical calculation were established using the known analytical results
[2] concerning the subdiffusive transport.

The general solution (6)-(8) shows that collisional particle diffusion in stochastic magnetic
fields is characterized by two kinds of trajectory trappings and contains two decorrelation mech-
anisms. The latter are produced by the collisional cross field diffusion χ⊥ and by the time
variation of the stochastic magnetic field. One of the trapping processes concerns the parallel
motion and is determined by collisions which constrain the particles to return in the already
visited places with probability one. This parallel trapping leads to a subdiffusive transport in
the absence of a decorrelation mechanism. The second kind of trapping concerns the magnetic
lines which at Km > 1 wind around the extrema of the vector potential.

3. Subdiffusive transport

In the case of a static stochastic magnetic field (τc → ∞) and in the zero Larmor radius limit
corresponding to negligible cross field collisional diffusion, χ⊥ = 0, a subdiffusive transport was
obtained. The magnetic line trapping that appears when Km > 1 does not affect the asymptotic
time-dependence of the running diffusion coefficient. There is however a significant effect of the
nonlinear process of magnetic line trapping but it appears to be localized in time. It determines
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Figure 1: The asymptotic diffusion coefficient as a function of χ⊥ (continuous line) compared
with the two terms in Eq.(8). M = 10, τc = ∞.

a transient decay of the running diffusion coefficient D(t). At later times, after the characteristic
return time of the parallel motion, a nonlinear build-up of Lagrangian velocity correlation is
obtained. The parallel motion eventually washes out the effect of the magnetic line trapping.
Consequently, the asymptotic behavior of the running diffusion coefficient in the collisionless
case is exactly the same as in the quasilinear conditions when the stochastic magnetic field does
not generate magnetic line trapping. However, the rather nontrivial evolution of the running
diffusion coefficient leads to anomalous diffusion regimes when a decorrelation mechanism is
present.

4. Diffusive transport induced by collisional decorrelation

The stochastic collisional velocity η⊥(t) in Eq.(1) moves the particles away from the mag-
netic lines and consequently it has a decorrelation effect leading to diffusive transport. The
asymptotic diffusion coefficient is determined from Eqs.(6)-(8) using the numerical code we
have developed. Some results are presented in Figure 1 where the asymptotic diffusion coef-
ficient Eq.(8) is represented as a function of χ⊥. The two components Dint and χ⊥ are also
represented. One can see that at small collisional diffusion χ⊥ 
 1, the non-linear interaction
term largely dominates the collisional term while at large collisional diffusion χ⊥ & 1, the non-
linear term is only a correction to χ⊥. Thus, the subdiffusive transport appearing at χ⊥ = 0 is
transformed by a small collisional cross field diffusion into a diffusive transport with a diffu-
sion coefficient that can be several orders of magnitude larger than χ⊥. The dependence of the
diffusion coefficient on χ⊥ is rather nontrivial. There is at very small χ⊥ an increase of D up
to a maximum. Then, at larger χ⊥, the nonlinear interaction of the parallel and perpendicular
trapping with the collisional decorrelation generates an unusual transport regime, in which the
effective diffusion coefficient decreases as the collisional diffusion χ⊥ increases. A minimum
of D is obtained when χ⊥ determines a decorrelation time of the order of the return time of the
parallel motion. At larger χ⊥ the nonlinear contribution Dint increases again with the increase
of χ⊥ but this contribution begins to be comparable and eventually negligible compared to the
collisional diffusion coefficient χ⊥.

5. Diffusive transport in time-dependent stochastic magnetic fields

In a time-dependent stochastic magnetic field with finite τc the configuration of the stochas-
tic field b(x,z, t) changes, the magnetic lines move and consequently the perpendicular velocity
of the particles is decorrelated leading to diffusive transport. We determine here the diffusion
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Figure 2: The asymptotic diffusion coefficient normalized with (λ2
⊥ν)M2 as a function of τc.

The continuous lines represent the running diffusion coefficient as function of t for the subdif-
fusive transport obtained at τc = ∞. M = 10, χ⊥ = 0.

coefficient in such time-dependent fields in the limit of zero Larmor radius (χ⊥ = 0), starting
from the general solution (6). The following diffusion regimes can be observed in Figure 2,
in the nonlinear conditions when the trapping of the magnetic lines is effective (Km > 1). The
quasilinear regime at small correlation times with D0 ≈ M2τc is characterized by a fast time-
variation which prevents trajectory trapping. At larger correlation times the magnetic lines can
be trapped before the stochastic magnetic field changes and the parallel motion is ballistic. In
these conditions the diffusion regime is similar to that described in [4] for the electrostatic tur-
bulence: the diffusion coefficient decreases with the increase of τc. A minimum of the diffusion
coefficient appears at τc of the order of the return time of the parallel motion. This is followed
at larger τc by an anomalous increase determined by the interaction of the parallel trapping with
the magnetic line trapping which generates correlation of the Lagrangian velocities. At very

large correlation times the diffusion coefficient decreases as D ≈ K2
mτ−1/2

c χ1/2
‖ .

6. Conclusions

We have studied here the transport of collisional particles in stochastic magnetic fields using
the decorrelation trajectory method. A rather complex dependence of the diffusion coefficients
on the plasma parameters was obtained. This is determined by the nonlinear process of mag-
netic line trapping interacting with the collisional velocity. We have shown that even without
changing the characteristics of the stochastic magnetic field, the diffusion coefficient can be
strongly influenced by the parameters which describe particle collisions. A minimum of the
diffusion coefficient was obtained for decorrelation times of the order of the average return time
for the parallel motion.
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