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Abstract. The critical role played in transport barriers by the cross phase between transport-causing fluctuations
is elucidated theoretically.  This work details how the cross phase contributes to flux reduction in the presence
of flow shear, and accounts for a number of experimental observations that cannot be understood solely in terms
of the response of fluctuation magnitudes.  It is found that 1) in strong shear, the cross phase for an advected
scalar responds more strongly to flow shear than do the amplitudes.  Consequently, the flux reduction produced
by flow shear is dominated by cross-phase suppression.  The scaling of the cross phase with shear strength is
such that the fluctuation level of either the scalar or the potential can increase, yet the flux decreases, as
observed in some experiments.  2) The interplay of magnetic shear and flow shear inhomogeneities can lead to
localized regions of negative cross phase, and therefore inward flux, provided the fluctuation spectrum is
dominated by a single, or limited range of helicities.  3) In collisionless trapped electron mode turbulence the
cross phase, particle flux, growth rate, and nonlinear coupling all depend on the density-potential correlation,
and hence all decrease with flow shear.  The decrease of growth rate and nonlinear coupling offset in the
saturation balance, leaving fluctuation levels largely unchanged.  

1. Introduction

The suppression of turbulence by E×B flow shear has been widely invoked to describe the
physics of transport barriers and enhanced confinement regimes [1].  However, under closer
scrutiny, it is not difficult to find measurements whose details appear to be at odds with the
simple suppression paradigm.  For example, probe measurements of the shear layers of a
variety of devices show a marked decrease of the particle flux in the region of flow shear,
while fluctuations of either the density or the potential actually increase [2-4].  In these cases,
and other experiments where detailed measurements have been made [5], a significant portion
of the particle flux reduction comes from a reduction in the sine of the density-potential cross
phase.  In probe-induced shear layers the flux is also observed to become inward locally if the
shear is strong [6].  The flux reversal occurs toward the inside edge of the shear layer, in a
region of positive shear, suggesting reproducible spatial structure.  The paradigm of
turbulence suppression by E×B flow shear is based on the simple notion that in stable
sheared flow, the amplitude of passive scalar fluctuations is reduced [7], or that key
instabilities are quenched altogether.  Neither of these notions fit the experimental
observations just cited, which do, however, suggest the importance of investigating the
response of the cross phase to flow shear.  The theoretical investigation of the cross phase
that follows shows that flow shear generally creates an unfavorable cross phase for transport.
In strong shear, the effect is more robust than amplitude suppression, and likely to be the
dominant suppression mechanism in transport barriers.

2. Cross Phase of Advected Scalar in Strong Shear

The transport flux of  a scalar χ due to advection by a turbulent E×B flow is Γ = –cB0-1∑k ky

|χ~ k,ω| |φ-k,-ω| sinδk,ω, where χ~ k,ω is the Fourier amplitude of the scalar fluctuation, φ-k,-ω

is the electrostatic potential, and sinδk,ω is the sine of the cross phase.  The scalar magnitude
and cross-phase are determined from the scalar evolution equation as a nonlinear response to
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the potential.  We calculate the cross phase of a generic advected scalar, inverting the
renormalized advection operator in uniform flow shear [8].  The scalar evolution equation is

[–iω + ikyxv0' – (∂/∂x)Dk,ω(∂/∂x) – ky2dk,ω] χ~ k,ω = cB0-1ikyφk,ωdχ0/dx, where v0' is the

constant shearing rate of the mean flow, χ0 is the mean scalar, and Dk,ω and dk,ω are the
renormalized turbulent diffusivities.  The diffusivities arise from the turbulent advection of
the scalar fluctuation, and are given by D = c2B0-2∑k(ky' – ky)fφk,ω Rk-k',ω-ω'fφk',ω', where f

= (ky')1/2 for D = Dk,ω and f  =  (ky)-1/2∂/∂x for D = dk,ω.  The function Rk-k',ω-ω' =

[–i(ω−ω') + i(ky–ky')xv0' – (∂/∂x)Dk-k',ω-ω'(∂/∂x)–(ky – ky')2dk-k',ω-ω']-1 is the operator of
the advective response time at wavenumber k–k'.  Note that the same differential operator

governs both χ~ k,ω and Rk,ω.  Therefore, in strong shear, when scalar fluctuations are sup-
pressed, the advective response is also suppressed.  This is a crucial feature of cross phase
response suppression.  In the limit that the ratio of shearing rate to dissipation rate becomes
infinite, the scalar fluctuation is in phase with the potential, and the flux is zero.  For a large
but finite shearing rate (small but finite dissipation), the flux is nonzero, and the degree of
suppression is proportional to the magnitude of the effective dissipation rate relative to the
shearing rate.  If the system is turbulent, the effective dissipation rate is in turn proportional
to the turbulent diffusivities, which are themselves suppressed by the flow shear.  

This effect is quantified by inverting the scalar evolution equation using a Green function and
asymptotic analysis for the strong shear limit.  The Green function localizes the advective
response to ∆xS–1/3, the reduced radial correlation of scaling theory [7], where ∆x is the

nominal mode width, and S = kyv0'∆x3/Dk,ω is the shear strength parameter.  The flux, which

integrates over the Green function, is given by Γ = Re∑kic2ky2 |ψk|2(dχ0/dx)[B02kyv0'∆x3

A(x)]-1, where ψk is the frequency-integrated potential eigenmode, and A(x) = [x/∆x – (ω +

iky2dk,ω)/kyv0'∆x] is the structure function of the turbulent mixing.  From previous
calculations, the eigenmode is shifted off the rational surface by an amount proportional to
v0'.  Changes in the mode width are weaker and are often ignored.  The mixing structure
function A(x) exhibits a Kelvin neutral layer.  Within this layer the mean flow vanishes, and
the scalar is optimally mixed; outside, the flux is strongly suppressed.  The width of the
neutral layer is proportional to dk,ω, which in turn is proportional to S–1, making it much

smaller than the reduced radial correlation ∆xS–1/3 in the limit of large S, and much smaller
than the eigenmode width.  Moreover, as noted above, the width becomes narrower in strong
shear because dk,ω, is itself suppressed by flow shear.  To estimate the magnitude of dk,ω,
we solve for dk,ω, using the Green function derived for the scalar evolution and the flux.
Outside the neutral layer, and assuming a spectrum in which strongly turbulent scales
(nondissipated) are coupled by a direct cascade to dissipated scales at somewhat higher
wavenumber, an upper bound for the flux is obtained:

Γ = –πc2B0-2 ∑kky2 |ψk|2(dχ0/dx)(kyv0'x)-1 ⋅ [πc2B0-2∑k'
 |dψk'/dx|2(k–k')µ(v0'x)-3], (1)

where µ is a viscous dissipation.  The first part of the expression (before the [ ] brackets)

represents the response of the scalar amplitude χ~ k,ω  to the flow shear.  The expression in
brackets is the cross phase response.  Both depend on the eigenmode amplitude squared, a
factor that may increase, decrease, or remain unchanged in sheared flow, depending on the
circumstance.  However, the phase factor has an additional dependence of (v0')-3, while the
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fluctuation magnitude factor has a dependence of (v0')-1.  The sine of the cross phase can
therefore be reduced to a considerably larger degree than the fluctuation magnitude factor.

3. Magnetic Shear and Flux Reversal

The flux calculated in the previous section is positive definite.  To identify physics that can
produce localized flux reversals like those observed in experiment [6], we examine the cross-
phase response for electron density advected in a sheared magnetic field by a turbulent flow
with linearly varying mean.  The nonadiabatic electron response governs transport.  We study
a nonadiabatic response characteristic of the edge plasma of Ref. 6.  To evaluate the
eigenmode we treat the nonadiabatic electron density as the electron contribution to ion
temperature gradient (ITG) turbulence.  Magnetic shear enters electron density evolution
through a dissipated parallel flow.  The competition between the inhomogeneities of flow and
magnetic field is known to produce an oscillatory eigenfunction envelope in trapped electron
turbulence, and therefore may affect the electron particle flux.  The nonadiabatic electron
density hk,ω, satisfies [–iω + ikyxv0' + (ve2ky2x2/υeLs2) – (∂/∂x)Dk,ω(∂/∂x) –

ky2dk,ω]hk,ω  = i(ω–kyv0'x–ω*)eφk,ω/Te, where ve is the electron the thermal velocity, υe is
the electron ion collision rate, Ls is the magnetic shear scale length, and Dk,ω and dk,ω are
given by the same expressions used in the previous section, but with the right hand side of
the advective response time Rk-k',ω-ω' augmented by the magnetic shear term + ve2(ky –

ky')2x2/υeLs2.  Using the asymptotic Green function technique the leading order flux in a
strong shear expansion is
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where ω̂  = ωr(k) iωi(k)+ikyv0(xr) is the Doppler-shifted frequency, ωr(k) is the peak of the
power density spectrum of the electrostatic potential in frequency space evaluated at
wavenumber k, ωi(k) is the width of the power density spectrum, xr is the location of the

rational surface, ∆ = ( Dk,ω̂ υeLs2/ve2ky2)1/4 is the electron response width, and ωs = kyv0'∆ is

the shearing frequency.  The eigenfunction |φ ωk, ˆ ( )x |2 and the structure function of the

electron density response [everything to the right of |eφ ωk, ˆ ( )x /Te|2 in Eq. (2)] are

deconvolved because the ion gyroradius-scale variation of the ITG eigenfunction is slow
compared to the electron gyroradius-scale variation of the structure function.

The behavior of the flux is determined by |φ ωk, ˆ ( )x |2 and the structure function.  The eigen-

function is positive definite, but the structure function has both positive and negative values,
allowing the flux to change sign.  Analysis of the seventh order polynomial obtained by taking
the real part of the numerator of the structure function indicates that it has three zeros for
large S.  One zero occurs near x=0 and a pair of zeros occur for x≈±∆S/2.  The structure

function is positive asymptotically for x→∞, and becomes negative between x=0 and the zero

at x≈∆S/2.  For negative values of x the structure function is first positive and then becomes
negative.  The structure function is plotted in Fig. 1.  The magnitude of the
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Fig. 1.  Structure function for S=3, (ωr(k)-ky2Im dk ,ω̂ )/ω*=0.3, (ωi(k)+ky2Re dk ,ω̂ )/ω*=–0.1,
and ω/ω*=0.3

structure function at the extrema on either side of  the origin  decreases  with increasing shear
as  S–4.   The magnitude of the structure function at the outer extrema around x≈±∆S is
essentially independent of S.  Besides having negative values, this structure function differs
from that of the previous section in two ways.  First, the width of the structure function is of
order ∆S, whereas for the homogeneous magnetic field the width is of order ∆S–1.  Second,
inside its width, the structure function has regions that both suppress the flux and yield
optimal mixing.  For the homogeneous field the flux is optimal, but only within the extremely
narrow mixing layer.  These differences arise from the inhomogeneity of the magnetic field.
They indicate that the behavior of transport in the presence of flow shear does not have
universal scaling properties if the turbulence is inhomogeneous.  This means that if the only
inhomogeneity of the system is the flow shear and its scale length is large, then the scaling
properties of turbulence suppression can be extracted from a single coefficient of a Taylor
expansion of the local flow profile.  On the other hand, if there are other inhomogeneities
present, such as that of a sheared magnetic field, the nature of transport is sensitive to the
profile of both the flow shear and the magnetic field shear.  

4. Eigenmode Contribution to Flux Reduction

We turn now to the eigenfunction, which has a significant effect on the flux.  For ITG
turbulence, the eigenfunction is determined by the ion dynamics and the adiabatic electron
response.  In the presence of linear flow shear, the eigenmode of the fluid ITG instability in a
sheared slab is known from previous studies to shift off the rational surface by an amount
proportional to S [9].  The spatial scale of the shift is governed by ion dynamics, i.e.,  by ρs,
the ion gyroradius evaluated at the electron temperature.  A simple estimate of the shift,
obtained from the eigenmode potential, is xITG = ρs(kyv0'ρs/ω *)(1+ηi)(Te/Ti)(Ls/Ln)2.  The

eigenfunction is large at this value of x, and becomes exponentially small beyond a mode
width.  The mode width is also proportional to ρs, but with little dependence on S.

Evaluating the flux from Eq. (2) at xITG yields Γ = –∑
k 

(cTe/eB0) n0ky |eφ
k
(xITG)/Te|2 ky2ρs2

(∆/∆ITG)4 [(1+ηi)(Te/Ti)(Ls/Ln)]-1, where ∆ITG = ρs [(1+ηi)(Te/Ti)(Ls/Ln)]1/2 is the nominal

zero flow ITG linear mode width obtained using ω = (1+ηi)(Te/Ti).  Two features are evident.

First, the electron structure function has a width ∆ about the rational surface governed by the

electron scale ρe.  The eigenmode is shifted away from the rational surface by xITG ~ ρs.
Hence, there is very little overlap between the eigenmode and the electron structure function,
resulting in the very small factor (∆/∆ITG)4=ω *υeLsLn/ve2.  Second, the shift of the

eigenmode is proportional to S, making the parameter S drop out of the flux.  Thus the flux is
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extremely small but does not decrease further if S is increased.  Because the eigenfunction is
exponentially small for x<xITG, the regions where the structure function is negative make a
negligible contribution to the flux.    

The situation is different if the eigenmode is a collisional electron drift wave. The electron
gyroradius scale governs both the eigenmode and the structure function.  Hence, the scale
separation assumption in Eq. (2) is no longer valid.  However, if the flux can still be
approximated by some product of the eigenfunction and structure function, the eigenfunction,
which shifts to x=∆S, will preferentially sample the positive (rightmost) lobe in Fig. 1.  The
negative lobe to the right of the origin will emerge, albeit with smaller amplitude.  Thus, a flux
reversal can be anticipated for an electron-scale eigenmode.  The result is sensitive to the
wavenumber sum in the flux expression.  Because the sum samples different helicities, a
smaller negative lobe associated with a given helicity will be cancelled by larger positive lobes
of nearby helicities.  However, if the spectrum is quasicoherent and dominated by a single
helicity, the negative flux region can survive.  In experiments the strong localization of the
flow may effectively isolate the fluctuations occurring in the flow layer, allowing a localized
flux reversal.  In Eq. (2) the density gradient is maintained, otherwise the gradient will relax.
A steady state flux with localized reversals requires additional transport, e.g., a collision-
driven flux that is larger than the anomalous flux, or a flux that is not poloidally symmetric.

A different situation arises in collisionless trapped electron turbulence, where the electron
density response can be iteratively inverted for strong shear and substituted into the ion
equation.  Both the growth rate and the advection of electron density depend directly on the
correlation between the electron density and the potential, and therefore on the cross phase.
Consequently, strong flow shear decreases both.  Unstable long-wavelength fluctuations are
saturated by the advection of electron density.  Therefore, the decrease in growth rate is
offset by the decrease in nonlinear coupling strength, leaving the saturated potential amplitude
largely unchanged.  The cross phase, which goes like the growth rate, is reduced by shear.  
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