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Abstract. A new temperature gradient driven instability in the short wavelength region k% p? >
1 is investigated. The mode is driven by the ion temperature gradient; it exists with adiabatic
electrons but may be further enhanced by the non-adiabatic electron effects. In the slab plasma
approximation, both local dispersion equation and non-local (differential equation) analysis indi-
cate instability in the short wavelength region. In the toroidal case the mode is somewhat similar
to the "ubiquitous mode” but does not require trapped electrons.

1. Introduction

Small scale instabilities driven by the ion and electron temperature gradients instabilities
are believed to be responsible for particle and energy transport in a tokamak. Both types
of modes, the ion temperature gradient (ITG) and electron temperature gradient (ETG),
have been extensively studied in the last years. In this work we report on a new regime
of the temperature gradient driven instability which occurs for large values of the Larmor
radius parameter, k3 p2 > 1, a = (e,7) [1]. Both, electron and ion, modes exist in the
respective regions, but the ion mode is of prime interest; the electron mode is suppressed
by the finite Debye length effects.

2. Local shearless mode
To illustrate the existence of new modes, first we consider a shearless slab case. Within

the local theory the parallel velocity and density perturbations for each species are given
by standard expressions
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Various plasma parameters are: wpo = —kycTo/€aBoLn, wre = —kycTo/€aBoLra, L,' =
—ng'0ng/0x, Lro = —T5'0T, /0, sq = W/kjVihas ba = k1p2/2, vie = 2T0/Ma, po =
VthaMaC/(€aBo); To1(b) = Iy exp(—b), q3 = ¢ — w/(kjc)A is an auxiliary potential, ¢ is
the electrostatic potential, A is the magnetic vector potential, and Z(s) is the standard
plasma dispersion function.
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The dispersion equation is obtained from (1) by using the Poisson and Ampere law
equations. It is solved as a function of the k,p; for fixed plasma parameters: 3 =2 x 107,
pi/Ln = 2v2 % 1072 p;i/Lyi = V2 x 10°Y, pi/Lre = V2 x 107, kyp; = V2 x 1071,
kypi = 2v/2x107%, 7 = 1, and Ap(Debye lenghth)= 0. Two new, electron and ion, unstable
branches exist in the regions kyp; > 1 and k,p. > 1 as shown in Fig. 1. Numerical solution
shows that similarly to the standard ETG mode [2], the electron short wavelength mode is
strongly stabilized in a high temperature plasma for Ap/p. > 1; it is completely suppressed
for Ap/pe > 3.
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Figure 1: Real (a) and imaginary (b) part of the eigen-frequency. Solid line — standard ITG
and short wavelength ion mode (left panel); dotted line — standard ETG and short wavelength
electron mode (right panel).

3. Ion short wavelength mode in the fluid regime, w > kv;

To investigate the nature of new modes we consider the slab plasma case assuming wp = 0
and adiabatic electrons. Then, for w/kjv; > 1 but keeping the full finite Larmor radius
effects for ions we obtain the following local dispersion equation
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In the limit of small b; < 1, equation (2) reduces to the standard local dispersion equation
for the long wavelength ion temperature gradient mode [3] that has the maximal growth
rate for k;p; < 1. New modes occur due to a specific plasma response for k,p; > 1
where it is usually assumed that the ion density response is Boltzmann due to decaying
asymptotics of Tg1(b;) ~ 1/4/b; for large b;. In fact, this is not necessarily true for modes
whose frequency increases with &, p; slower than linear function of k, p;. In the latter case
the combination (1 — w,/w)T(b;) which enters the density expression remains finite, and
the density response is not Boltzmann. This leads to a short wavelength branch which
has not been investigated earlier. In the limit of large £, p; > 1, by expanding the Bessel
function in (2) one obtains the following dispersion equation for the ion short wavelength

mode 1 1 1
Wni 1 Wni i
—_— 1+ = 24 ———(1—=) =0. 3
In the leading order we have from (3) w® = kff (14;/2)/(8y/7Ly). A simplified
dispersion equation (2) qualitatively reproduces the behavior of the eigen-frequency in the
whole range of values of the parameter k| p; (shown in Fig. 2 by circles).
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Figure 2: Real part (a) and growth rate (b) of the short wavelength ion mode. Solid line
— local kinetic result from (1) assuming adiabatic electrons, circles — fluid approximation
given by (2). Dotted line - effect of non-adiabatic electrons for . = 5. Other parameters:
kL, =0.1, a, = kHvti/ws = 0.1, where wy = v; /Ly, n; = 5, ki = k§+k§, kypi = V2x1071.

4. Ton short wavelength mode in the local toroidal limit

From the standard gyrokinetic equation one can obtain the following equation in the bal-
looning space
20(0) = [ Fudo(hsvs feoc)d
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where O, = wy; + wr; (V2 /v — 3/2), &p = 6.0 10"

wp(cosd + 50sin b)) (vi/?vf + vﬁ/vf), 0 is _s010E

the standard ballooning space variable, wp = o 4010t

2e,wnp; 1s the toroidal drift frequency, e, = g 30107

L,/ R is the toroidicity parameter. The per- $ 20107

pendicular wave vector is k7 = & p} (1 +5°6%). Lo 107 _

The adiabatic electrons are assumed in (4). 001075 | PR
In the local limit ’iv|‘/qRa/89 — —k”UH. A kp,

simple insight into the toroidal short wave-

length modes can be obtained from a local Figure 3: Ion mode growth rate from the
analysis. In the fluid limit, w > wp and equation (4) in the local limit; solid line —
neglecting the ion parallel motion one can sp = 0, dashed line — sp = 1, dotted line —
obtain from (4) the following local disper- sp =6

sion equation

w2 (2 — Fg) 4+ w (wm-FO + wTZ-Gl — CUDGQ) + waTZ'Gg + wam'GQ = O, (5)

where G1 =b (Fl(b) - Fo(b)), GQ = G1/2+F0(b), and G3 = Fg(b) +b [3F1(b)/2 — 2F0(b)] +

bG1+T(b), where b = k7 p7 (1+5°6%)/2. In the short wavelength limit k,p; > 1 equation (5)

predicts the interchange type mode with a growth rate v ~ (3(1 + ni/Q)vati/(IG\/Tan))l/Q.
It can be readily observed that the toroidal short wavelength I'TG mode is closely related
to the “ubiquitous” modes [4]: the dispersion equation (5) is analogous to the dispersion
equation in Refs. 4 (except the contribution of trapped electrons which is omitted in (5)).
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The applicability of the fluid equation (5) is limited by the condition w > wp which re-
quires either small values of the magnetic drift frequency wp or large temperature gradient
parameter 7;. In a general case with a finite value of the parallel wave vector, the instability
tends to be stabilized around k, p; >~ 2 + 3 for larger values of the toroidicity parameter
sp = wp/kyv;. [5]. This is shown in Fig. 3 which is obtained by solving equation (5) in
the local limit without expansion in wp and kjv).

5. Nonlocal differential equation analysis

To investigate the effect of the magnetic shear we employ nonlocal differential equation in
the fluid limit w > kjv; and w > wp
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Here various coefficients are defined as follows: C; =T4(b)/2, Dy =T¢/2+ G1/2, Cy =
2
kllakl/aﬁGl, DQ - — kfa/u/aﬂ G4, G4 - 2 [bGl —f— bFO - bFl/Q], 03 - — (kllakl/aG)

2
Gs +k1' 0%k, /002Gy /2 Dy = — (k7'0k1/00) Gr— k1'0%k./06°Ge, G5 = (2bG1 +bL'o +
bFl)/Q, G6 = b(Gl + F() - F1/2), G7 == b(—QbGl + FO + F1/2 + QbFl - 3bF0) Equation
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Figure 4: Normalized real (a) and imaginary (b) part of the eigen-frequency as obtained
from shooting code solution of (6)

similar to (6) was obtained in Ref.6. In the limit of k,p, < 1 it has been investigated
for the standard long wavelength modes [3]. We solve the equation (6) with a shooting
code with full FLR effects for arbitrary values of k,p;. The eigen-frequency obtained from
the shooting code solution is shown in Fig. 4 as a function of kyp;. for 5, = 5, 5 = 0.8,
a, = kjvy/ws = 0.1, kR = 1, and &k = 1/(¢R). A typical eigen-function in the short
wavelength limit ( k,p; = 5v/2) is shown in Fig 5a. For comparison, in Fig. 5b we show a
typical eigen-function in the long wavelength limit ( k,p; = 0.5v/2) [3].

6. Summary.
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In summary, we have investigated new short wavelength temperature gradient driven modes
that are active in the region k% p2 > 1, a = (e, 7). Both electron and ion modes may exist,
but the electron short wavelength mode is strongly suppressed by the finite Debye length.
The instability is investigated in the local approximation, with non-local differential eigen-
mode equation (shooting code solution) as well as with non-local integral equation [5,7].
Results of these approaches are in general agreement. The particle gyrokinetic simulations
[8] are in progress. The ion mode is destabilized primarily by the ion dynamics but it is

Figure 5: The eigen-function (in arbitrary units) as a function of the ballooning variable
0 = x in the short wavelength limit — (a) , k,p; = 5v/2, and the standard long wavelength
limit — (b), k,p; = 0.5V/2; other parameters are 7; = 5, § = 0.8, a, = kjvi/ws = 0.5,
kR = 1. Solid line - real part and dashed line - imaginary part.

also affected by the electron temperature gradient. It is unstable in the region between the
standard I'TG and ETG modes, thus providing an opportunity for interaction of modes
with disparate scale (such as standard ITG and ETG). One of the most interesting features
of the ion short wavelength mode is its ability to affect the electron transport. Note that
for a typical plasma pressure in a tokamak the characteristic scale length of the ion short
wavelength mode approximately corresponds to the electron skin depth size.
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