
1 TH/6-1

Nonlinear MHD Analysis for LHD Plasmas

K. Ichiguchi 1), N.Nakajima 1), M. Wakatani 2), B.A. Carreras 3)

1) National Institute for Fusion Science, Oroshi-cho 322-6, Toki, 509-5292, Japan
2) Graduate School of Energy Science, Kyoto University, Gokasho, Uji, 611-0011, Japan
3) Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA

e-mail contact of main author: ichiguch@nifs.ac.jp

Abstract. The nonlinear behavior of the interchange modes with multi-helicity in the Large Helical Device is
analyzed based on the reduced MHD equations. In the equilibrium at sufficiently low beta value, the saturation
of a single mode and the following excitation of other single mode whose resonant surface is close to that of
the saturated mode are slowly repeated. This sequence leads to the local deformation of the pressure profile.
Increasing the beta value with the pressure profile fixed, a bursting phenomenon due to the overlap of multiple
modes is observed in the kinetic energy, which results in the global reduction of the pressure profile. Increasing
the beta value using the pressure profile saturated at the lower beta value suppresses the bursting behavior. This
result indicates the possibility that the pressure profile is self-organized so that the LHD plasma should attain the
high beta regime through a stable path.

1. Introduction

In the recent experiments in the Large Helical Device (LHD), high performance discharges have
been successfully carried out in the configuration with the inward shift of the vacuum magnetic
axis. Particularly, in the high beta discharges, the average beta value of 3.2% was achieved in
the configuration with the vacuum magnetic axis located at Rax = 3.6m[1]. On the other hand,
the linear MHD stability of the plasmas was studied with the RESORM code[2] which is based
on the reduced MHD equations for stellarator configurations. The initial stability studies[3]
were done using smooth pressure profiles. The results of these studies showed that low-n ideal
interchange modes are unstable for beta values lower than the experimental ones. Here, n
denotes the toroidal mode number.

To explain the discrepancy between theory and experiment it is necessary to invoke the ex-
istence of a stabilizing mechanism. Because the ideal interchange modes are driven by the
pressure gradient, one possible stabilizing mechanism is the local flattening of the pressure pro-
file at the low order resonant surfaces[4,5]. It was shown by iterating the equilibrium and the
linear stability calculations that staircase-like profile of the pressure can effectively stabilize the
multiple modes with different n simultaneously. However, it was not clarified whether such
locally flat profile can be actually achieved in the toroidal geometry. Besides, the overlap of
the modes whose resonant surfaces are radially close to each other possibly becomes a critical
issue. In order to study these problems, nonlinear analysis is inevitable. Thus, in this paper, we
discuss the nonlinear behavior of the MHD fluctuation in the LHD plasmas, especially in the
point of the the pressure profile variation.

2. Basic Equations and Numerical Scheme

We have developed a nonlinear MHD calculation code extending the RESORM code, which
solves the reduced MHD equations based on the modified stellarator ordering including the
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higher order toroidal effect[6]. The equations are Ohm’s law, vorticity equation, and the equa-
tion of state. These equations can be written in terms of the poloidal magnetic flux, Ψ, the
velocity stream function, Φ, and the plasma pressure, P. These equations are:
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Here, ζ denotes the toroidal angle and ∇⊥ is defined as ∇⊥ = ∇−∇ζ (∂/∂ζ ). The magnetic
differential operator and the convective time derivative are given by
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respectively. The factor g implies the diamagnetic effect in the toroidal field. The term of ∇Ω
means the averaged magnetic curvature driving the interchange mode and Ω is given by
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where the subscript ‘eq’ means the equilibrium quantity and the overline denotes the toroidally
averaged value. The vorticity U and the toroidal current density Jζ are expressed by
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∇⊥Ψ, (7)

respectively. The magnetic field is normalized to its value at the magnetic axis, B0, and β0
denotes the beta value at the axis. The lengths in the ζ and the perpendicular directions are
normalized by the major radius R0 and the average minor radius a of the plasma, respectively,
and ε is given by a/R0. The time is normalized by the poloidal Alfvén time τA defined by
R0

√µ0ρm/B0, where ρm and µ0 are the mass density and the vacuum permeability, respectively.
The magnetic Reynolds number S is defined by S = τR/τA, where τR = µ0a2/η is the resistive
diffusion time and η denotes the resistivity. The resistivity is assumed to be constant in the
present work. We introduce the viscosity for the perpendicular flow in the vorticity equation.
The coefficient ν is normalized by a2ρm/τA. The perpendicular and parallel heat conductivity
terms are also introduced in the equation of state with the coefficients of κ⊥ and κ‖, respectively,

which are normalized by a2/τA. In the resistivity and the heat conductivity terms , only the
perturbed parts of Jζ and P are included, respectively.
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FIG.1. Profiles of Mercier quantity normalized
so that the shear term should be -1/4 (dashed
lines) and rotational transform (solid lines) for
the pressure profile of eq.(8) at β0 = 0.5% (blue)
and 1.0% (red). Rational surface with ί = 2/5
is indicated.
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FIG.2. Linear growth rates versus toroidal mode
number n. Circles and triangles show the
growth rates for the pressure of eq.(8) at
β0 = 0.5% and 1.0%, respectively. Squares
show the growth rates at β0 = 1.0% for the
pressure profile saturated nonlinearly at
β0 = 0.5%. Numbers indicate the dominant
poloidal mode number of each n mode.

The flux coordinates (ρ,θ ,ζ ) are employed to simplify the magnetic differential operator. Here
ρ and θ are the square root of the normalized toroidal flux and the poloidal angle, respectively.
The finite difference is employed for the radial discretization. The radial grid number used here
is 192. The dependence of the poloidal and the toroidal angles are expressed by the Fourier
series. The multi-helicity components of the perturbations are treated. The mode coupling is
calculated through the direct convolution of the Fourier coefficients. For the time evolution,
the two-step explicit algorithm[7] is employed, while only the linear dissipation operators are
treated implicitly in each step. This code examines three-dimensional static equilibrium which
is calculated by using the VMEC code[8]. The toroidally averaged geometry is used in the con-
struction of the flux coordinates. Therefore, the toroidal effects are included automatically. The
equilibrium toroidal current density is calculated by using the averaged equilibrium equation
with the averaged curvature given by eq.(6).

2. Equilibrium and Linear Stability

First, we consider zero current equilibria for the shifted-in LHD configuration (Rax = 3.6m)
using the pressure profile of the form

P = P0(1−ρ2)(1−ρ8). (8)

In the equilibrium calculation, the free boundary condition is employed with the constraint that
the separatrix plays a role of a virtual limiter at R = 4.63m[9]. The pressure profile of eq.(8) is
close to the one observed in the experiments for 〈β 〉 < 1%[10], where 〈β 〉 denotes the volume
average beta. Here we focus on the equilibria at β0 = 0.5% and 1.0%, which correspond to
〈β 〉 = 0.21% and 0.43%, respectively. Figure 1 shows the profiles of the rotational transform
and the Mercier quantity DI[11]. The difference in the rotational transform between the equilib-
ria is quite small. The equilibrium is Mercier unstable in the regions of ρ < 0.44 and ρ < 0.57
at β0 = 0.5% and 1.0%, respectively, because of the low shear and high magnetic hill. For the
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FIG.3. Time evolution of the kinetic energy of the perturbation for the β0 = 0.5% equilibrium. Thick
line shows the total energy and thin lines show the n = 0, 1, 2, 3, 4 and 5 components.

nonlinear analysis, we use the dissipation parameters of S = 106, ν = 10−4, κ⊥ = 10−6 and
ε2κ‖ = 10−2 (ε = 0.16). The linear growth rates with these parameters at β0 = 0.5% and 1.0%
are shown in Fig.2 as the function of the toroidal mode number n. All unstable modes have
typical interchange mode structure. Only the modes with n = 2, 3 and 4 are linearly unstable at
β0 = 0.5%, while all of the modes for 1 ≤ n ≤ 7 are unstable at β0 = 1.0% and the growth rates
are much larger than those at 0.5%. In each equilibrium, the n = 2 mode has the largest growth
rate and the m = 5 is the dominant component in this mode.

3. Mild Saturation with Local Pressure Flattening

For the nonlinear calculation with β0 = 0.5%, we use the following range of Fourier com-
ponents: 0 ≤ n ≤ 5 and 0 ≤ m ≤ 16, where m denotes the poloidal mode number. Figure 3
shows time evolution of the kinetic energy of the perturbation which is defined by Ek = ∑n En

k ,
En

k = 1
2

∫ |∇⊥∑m Φmn sin(mθ −nζ )|2dV .

The linear phase is dominated by the (m,n) = (5,2) mode, which is nonlinearly saturated at
t = 4800τA. In the nonlinear phase, the variation of the kinetic energy is small and slow. Figure
4 shows the flow pattern and the pressure contour at t = 4800τA. The convective flow forms the
vortices around the resonant surface with ί = 2/5. The number of the vortices is two times of
the poloidal mode number. These vortices interchange the high and the low pressure regions
alternatively in the poloidal direction. Therefore, the structure like a mushroom is generated.
As a result, the average pressure, 〈P〉 = P̃m=0,n=0 + Peq, is locally flattened around the rational
surface as shown in Fig. 5, where the tilde means the perturbed quantity. On the other hand, it
is obtained that the compression of the magnetic surface due to the vortices causes the driven
reconnection of the field line. Because the island is located at the vortex position, the number is
also two times of the poloidal mode number like the case in Ref.[12].

The local pressure flattening makes the pressure gradient steep at the both sides of the flat region.
Then, the mode resonant at the region with the steepened pressure gradient can be destabilized.
In the saturation of the (m,n) = (5,2) mode, the pressure gradient at the surface with ί = 3/7

is steepened, which is located just outside the ί = 2/5 surface. Then, the (m,n) = (7,3) mode
grows, and saturates at t = 11325τA, as shown in Fig.3. As shown in Fig.5, two flat pressure
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FIG.4. Flow pattern (black arrows) and
pressure contour on the (ρ ,θ) plane at ζ = 0
cross section at t = 4800τA for the β0 = 0.5%
equilibrium, plotted only in the region of
ρ ≤ 0.6. Color of the pressure contour varies
red to blue as the value decreases. The longest
arrow corresponds to the largest velocity in this
plane.
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FIG.5. Profiles of average pressure 〈P〉 (solid
lines) at t = 0(blue), 4800τA(green),
11325τA(purple) and 24000τA(red) and average
rotational transform 〈́ι〉 (dashed lines) at
t = 0(blue) and 24000τA(red) in the region of
ρ ≤ 0.8 for the β0 = 0.5% equilibrium. Average
pressure is normalized so that 〈P〉(ρ = 0, t = 0)
should be unity. Rational surfaces with ί = 2/5,
3/7 and 1/2 are indicated.

regions coexist at this time. The saturation of the (m,n) = (7,3) mode makes the gradient at
ί = 1/2 surface steep in turn, and excites the (m,n) = (2,1) mode. All modes are saturated
completely at t = 24000τA. The average pressure profile is deformed so as to be the staircase-
like shape with multiple flat regions, as shown in Fig.5. The average rotational transform defined

by 〈́ι〉 = 1
ρ

∂Ψ̃m=0,n=0
∂ρ +́ ιeq is also plotted in Fig.5. The nonlinear effect on the average rotational

transform is much weaker than on the pressure. Note that the n = 1 mode is dominant in the
kinetic energy at t = 24000τA, which is linearly stable.

4. Global Pressure Reduction due to Bursting Activity

Next, we examine the nonlinear evolution of the perturbation for β0 = 1.0%. The calculation is
carried out in the Fourier space of 0 ≤ n ≤ 7 and 0 ≤ m ≤ 22. Figure 6 shows the time evolution
of the kinetic energy. The (m,n) = (5,2) component is dominant in the linear phase as in
the case of β0 = 0.5%. However, a bursting activity appears after the dominant linear mode
saturates. In the bursting phase, the multiple modes with different helicity grow and decay
rapidly. The kinetic energy of each mode for n ≥ 1 is in the level of En

k ≥ 10−7. This fluctuation
level is almost one-order larger than that in the case of β0 = 0.5%. This implies that the driving
force for each mode is enhanced. Figure 7 shows the flow pattern and the pressure contour
at t = 3840τA where Ek has a maximum value. The pressure structure is too complicated to
identify the mode number although the n = 2 mode is dominant in the kinetic energy at this
time. The property of the pressure structure indicates the overlaps of many components in the
bursting phase. This is due to the enhancement of the mode width by the large driving force.

The profile of the average pressure shows the several flat regions corresponding to ί = 2/5, 4/9,
1/2 and 4/7 at t = 3840τA, as shown in Fig.8. Particularly, there exist large flat pressure regions
around the ί = 2/5 and the ί= 1/2 surfaces. The regions with strongly steep pressure gradient are
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FIG.6. Time evolution of the kinetic energy of the perturbation for the β0 = 1.0% equilibrium with the
pressure of eq.(8). Thick line shows the total energy and thin lines show the n = 0, 1, 2, 3, 4, 5, 6 and 7
components.

located just outside the large flat pressure regions. It can be considered that such structure in the
average pressure results from the cooperative flow of the overlapped modes. After the bursting
phenomena, a large amount of the pressure in the core region is transported to the peripheral
region. The central pressure decreases to 90% of the initial value and the whole gradient is also
reduced in the region of ρ ≤ 0.5 at t = 13000τA as shown in Fig.8. Thus, the bursting activity
causes the global reduction in the pressure.

5. Stable Path to High Beta Regime

For pressure profile in eq.(8), the results in the previous section indicate that the achievable beta
value in LHD may be limited by the bursting activity. On the other hand, as the beta value
increases we expect a succession of pressure profiles that vary continuously with the beta. In
order to simulate this situation, we utilize the saturated pressure profile at β0 = 0.5% for the
calculation at β0 = 1.0% here, instead of the profile of eq.(8). The initial profile is determined
by taking the average profile at t = 24000τA at β0 = 0.5% and increasing the beta value up to
1.0%. Then, the three-dimensional equilibrium is calculated with the VMEC code under the
free-boundary condition to include the beta dependence of the plasma boundary.

The linear growth rates for this equilibrium are plotted in Fig.2. The dominant mode is the
n = 3 mode, and the growth rates are reduced for other modes compared with those in the
equilibrium with eq.(8). The nonlinear evolution of the kinetic energy is shown in Fig.9. The
behavior is similar to that in the β0 = 0.5% case. The saturation of the (m,n) = (8,3) mode at
t = 1700τA slowly excites the (m,n) = (5,2) mode. The saturation of the (5,2) mode occurs at
t = 3000τA, which excites the (m,n) = (7,3) and (8,3) modes. After the sequence, the variation
of the kinetic energy is small and slow. No bursting phenomenon appears in the time range of
t ≤ 13000τA. This is because the driving forces of the n = 1, 2 and 4 modes are already reduced
by the deformation of the initial pressure profile. New flat regions are generated around ί = 2/3
and 6/11 in the average pressure profile at t = 13000τA, as shown in Fig.10. However, they are
just the local variations and the reduction of the core pressure is much smaller than that of the
bursting case. Thus, the plasma pressure can be self-organized so as to suppress the bursting
activity in the increase of the beta value from β0 = 0.5% to 1.0%.
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FIG.7. Flow pattern (black arrows) and
pressure contour on the (ρ ,θ) plane at ζ = 0
cross section at t = 3840τA for the β0 = 1.0%
equilibrium with the pressure eq.(8), plotted
only in the region of ρ ≤ 0.6. Color of the
pressure contour varies red to blue as the value
decreases. The longest arrow corresponds to the
largest velocity in this plane.
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FIG.8. Profiles of average pressure 〈P〉 (solid
lines) at t = 0(blue), 3840τA(green), and
13000τA(red) and average rotational transform
〈́ ι〉 (dashed lines) at t = 0(blue) and
13000τA(red) in the region of ρ ≤ 0.8 for the
β0 = 1.0% equilibrium with the pressure eq.(8).
Rational surfaces with ί = 3/8, 2/5, 3/7, 4/9, 1/2
and 4/7 are indicated.

6. Conclusions

The nonlinear evolution of the interchange mode with multi-helicity is examined in the inward-
shifted low-beta LHD equilibria with almost parabolic pressure profile. The behavior is differ-
ent depending on the beta value. In the case of the sufficiently low beta value, the perturbations
are slowly saturated in the low fluctuation level. The local pressure flattening due to the satu-
ration of a single mode steepens the pressure gradient outside the flat region, and excites other
single mode resonant at the steep gradient region. Therefore, the saturation and the excitation of
the modes with different helicity are succeeded alternatively in the time evolution. The resultant
pressure profile is staircase-like, as is expected by the linear calculation[4]. The occurrence of
such mild saturation is attributed to the fact that only a few modes with different helicity are
destabilized and the driving force of each mode is weak. In this case, the distance between
the resonant surfaces of the unstable modes is wide enough for each mode to generate the flat
pressure region needed for the saturation. Thus, the variation in the pressure profile is limited
in the local regions.

On the other hand, increasing the beta value with the pressure profile fixed enhances the driving
force. Then, the number of the unstable mode increases and the larger width of the flat pressure
region is needed for the saturation of each mode. If the distance between the resonant surfaces
of the unstable modes is smaller than the width of the necessary flat region for the saturation
of the modes, the modes can overlap each other and the bursting activity is observed in the
kinetic energy. Because the multiple modes grow and overlap in the core region for ρ ≤ 0.5
in the present case for β0 = 1.0%, the bursting activity continues until the pressure gradient is
decreased all over the region. Thus, the global reduction of the pressure profile is caused.

We simulate the continuous change of the pressure profile in the increase of the beta value by
employing the saturated pressure profile at the lower beta value. It is demonstrated that the
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FIG.9. Time evolution of the kinetic energy of the
perturbation for the β0 = 1.0% equilibrium with the
saturated pressure profile at β0 = 0.5%. Thick line
shows the total energy and thin lines show the
n = 0, 1, 2, 3, 4, 5, 6 and 7 components.
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FIG.10. Profiles of average pressure 〈P〉
(solid lines) at t = 0(blue) and 13000τA(red)
in the region of ρ ≤ 0.8 for the β0 = 1.0%
equilibrium with the saturated pressure
profile at β0 = 0.5%. Profile of the average
pressure at t = 13000τA in Fig.8 is also
shown by dashed red line for the comparison.

modes are nonlinearly saturated slowly as in the lower beta case. The bursting activity, which
may limit the achievable beta value, is avoided by the reduction of the driving force due to the
local deformation of the initial pressure profile. This result indicates the possibility that the
pressure profile is self-organized through the nonlinear evolution of the interchange mode in
LHD so that the plasma should attain the high beta regime beyond the linear stability limit for
the fixed smooth pressure profiles.
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