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Abstract We propose a model for Edge Localized Modes (ELMs) and pedestal constraints based upon
theoretical analysis of instabilities which can limit the pedestal height and drive ELMs.  The sharp pressure
gradients, and resulting bootstrap current, in the pedestal region provide free energy to drive peeling and
ballooning modes.  The interaction of peeling-ballooning coupling, ballooning mode second stability, and finite-
Larmor-radius effects results in coupled peeling-ballooning modes of intermediate wavelength generally being
the limiting instability. A highly efficient new MHD code, ELITE, is used to calculate quantitative stability
constraints on the pedestal, including constraints on the pedestal height.  Because of the impact of collisionality
on the bootstrap current, these pedestal constraints are dependant on the density and temperature separately,
rather than simply on the pressure.  A model of various ELM types is developed, and quantitatively compared to
data.  A number of observations agree with predictions, including ELM onset times, ELM depth, and variation in
pedestal height with collisionality and discharge shape.  Stability analysis of series of model equilibria are used
both to predict and interpret pedestal trends in existing experiments and to project pedestal constraints for future
burning plasma tokamak designs.

1. Introduction & Motivation

High performance (“H-mode”) operation in tokamaks is characterized by the
spontaneous formation of a transport barrier near the edge of the closed flux surface region.
The term “pedestal” is used here to describe the resulting sharp pressure gradient region just
inside the magnetic separatrix in H-mode operation.  This region generally occupies
approximately the outer 1-5% in normalized radius of the closed flux surface region, but is
observed to have a disproportionately large impact on overall plasma performance [see e.g.,
Refs. 1-3].

The physics of the pedestal is important to the performance of present tokamak
experiments, and expected to be critically important for future burning plasma devices, for
two primary reasons.  The first is the strong dependence, both observed and predicted by
transport models, of core confinement on the pressure at the top of the pedestal (or “pedestal
height”).  Core transport models generally take the pedestal height as an input parameter, and
predict the resulting transport in the core plasma.  Because these models are generally “stiff”
(transport increases rapidly above a critical gradient), the predicted core temperature, and
hence fusion power or Q=Pfus/Pin, increases strongly with increasing pedestal height.  For
GLF23, the dependence is roughly Pfus~β

2

ped, where βped is the ratio of plasma to magnetic
pressure at the top of the pedestal [4]. Hence, transport code predictions for proposed burning
plasma candidates can be restated in terms of the pedestal height (or at a given density, the
pedestal temperature) requirements for a given level of fusion performance.

The second important pedestal physics issue is the presence of edge localized modes
(ELMs).  ELMs are repetitive magnetic perturbations in the pedestal vicinity, which transport
bursts of particles, and usually also heat, across the separatrix and to the divertor plates [see
e.g., Refs. 5-9].  While the ELMs themselves are generally benign in present experiments,
large ELMs potentially pose a significant divertor erosion risk in burning plasma scale
devices.  Furthermore, as discussed below, ELMs appear to be a manifestation of
magnetohydrodynamic instabilities driven by a combination of the strong pressure gradient
and resulting bootstrap current in the pedestal region.  These instabilities place constraints on
the achievable pedestal height at a given transport barrier width, and thus constrain overall
performance as discussed above.  Developing a predictive understanding of the physics
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controlling ELMs and the pedestal height is thus an important objective for pedestal theory,
with a goal of maximizing the pedestal height while maintaining acceptable ELM behavior.

2. Pedestal MHD Stability and the ELITE Code

The sharp pressure gradients, and consequent large bootstrap currents in the pedestal
region can destabilize peeling (ie edge localized external kink) and ballooning modes over a
wide range of toroidal mode numbers (n).  The bootstrap current plays a complex dual role in
the stability physics, on one hand driving peeling modes, while on the other lowering edge
shear and opening second stability access to high-n ballooning modes. Field line bending
stabilizes long wavelength modes, while short wavelengths are stabilized by a combination of
second stability and FLR/diamagnetic effects, shifting the limiting modes to intermediate
wavelengths (typically n~4-40).  These dominant modes are referred to here as coupled
``peeling-ballooning'' modes, and are driven by both parallel current (Jped) and the pressure
gradient (p’ped) [10,11].  These intermediate-n peeling-ballooning modes impose constraints
on the pedestal height, which are functions of the pedestal width, plasma shape, collisionality,
safety factor and other equilibrium details.

A new MHD stability code, ELITE [12,11], employs a novel finite-n extension of
ballooning theory [12] which allows accurate and highly efficient study of 5
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ballooning modes in shaped toroidal geometry.  ELITE calculates both growth rates
(compressionless or compressional) and mode structures of the limiting instabilities, which
provide useful input for the development of ELM models.  ELITE uses a Fourier
representation in the poloidal direction, and employs numerical methods which allow very
efficient stability calculations, facilitating its use in the large number of stability calculations
which are needed to characterize pedestal stability constraints as a function of mode
wavelength, pedestal width, plasma shape, collisionality, safety factor etc.  A sample ELITE
benchmark is shown in Figure 1, where growth rates from ELITE are compared at lower n’s
to growth rates from the GATO [13] code, and calculated mode structures are also compared.
ELITE, together with low-n MHD codes such as GATO, allows quantitative study of the full
relevant spectrum of n.

ELITE results together with analytic insights are used to develop a model of various
types of ELMs and stability constraints on the pedestal, including direct constraints on the
pedestal temperature (Tped) [14]. Quantitative stability limits are calculated by varying the
pedestal temperature and density, while self-consistently calculating the current, including
bootstrap contributions.  Figure 2(a) shows such limits for a JET-like equilibrium with fixed
profile shapes.  The stability boundary in Jped,βN (βN ∝p’ped) space is shown for the range
5<n<30, along with eigenmode structures of the limiting instability in various regimes.
Peeling modes are the limiting instability at high Jped, low p’ped, while ballooning modes are
most unstable at high p’ped, low Jped. Intermediate 6<n<8 coupled peeling-ballooning modes
are the limiting instability in the high p’ped, high Jped region in which high performance shots
generally operate.
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Fig.!1.!(a)!Growth rates from the ELITE and GATO codes for a circular benchmark case show good
agreement in the range of overlap (4 ≤ n ≤ 9).  Calculated eigenmode structures from (b) ELITE and
(c) GATO are also compared.  The relative amplitudes and radial structure for the various poloidal
modes are shown here for n=8.
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Fig.!2.!(a)!Calculated pedestal stability boundary for 5<n<30, along with eigenmodes of the limiting
instability in various regimes.  A 2D contour plot of an n=6 mode structure is inset. (b) A schematic
showing the variation of pedestal stability boundaries with discharge shaping. (c) Model of 3 types of
ELM cycle.

Because of the strong collisionality dependence of the bootstrap current, there is
generally a monotonic relationship between the pedestal temperature and Jped in the regime of
interest.  Hence, diagrams like Fig. 2(a) can be recast into stability limits in p’ped,Tped space
and used to calculate direct stability limits on the pedestal temperature at a given pedestal
width.  The pedestal stability boundary is a strong function of discharge shape, as shown
schematically in Fig. 2(b).  Improving shaping, for example by increasing triangularity,
decouples peeling and ballooning modes, opening up second stability access for high-n
modes, and leading to a stability boundary at higher p’ped, Jped (and hence higher Tped).   Note
the rather complex dependencies depicted in Fig. 2(b).  For example, while increasing current
is always destabilizing for the “weakly shaped” case, it can be strongly stabilizing in a
“strongly shaped” case where higher current lowers the shear and opens second stability
access to high-n modes, resulting in a higher stability boundary in p’ped and a longer
wavelength limiting instability.

Models for various ELM cycles can be envisioned in this p’ped, Jped parameter space, as
shown in Fig. 2(c).  Dynamically, the pressure gradient increases on a transport time scale
while the current grows on a slower resistive time scale, and an intermediate-n peeling-
ballooning mode is triggered when the stability boundary is reached at the upper right of the
diagram, resulting in a Type I ELM.  Smaller ELMs are expected when the current, due to a
combination of high collisionality and/or increased stability limit due to strong shaping, does
not reach the peeling-ballooning limiting value, even in steady state.  This small ELM cycle is
labeled “II” in Fig. 2(c).  At low power and low density, the small ELM cycle labeled “III”
occurs (note that high density Type III ELMs are likely resistive modes).  The ELM model
takes the lost ELM energy to be related to the radial width of the calculated most unstable
mode, and this, along with the location in parameter space at which the instability occurs,
provides an explanation for large observed variations in ELM behavior.  Of course nonlinear
ELM physics and scrape-off-layer transport must be considered for the development of a fully
quantitative theory of ELM heat loads to the divertor.

3. Comparison to Experiment and Projection to Future Devices

The peeling-ballooning stability model can be compared to experimental results in two
ways:  1) via direct comparison with detailed equilibrium reconstructions of particular
experimental shots, as described in Sec. 3.1, and 2) via comparison of the broad experimental
database with stability trends predicted using series of model equilibria which systematically
vary pedestal parameters as described in Sec. 3.2.  Series of model equilibria can also be used
to predict pedestal constraints in future machines, as described in Sec. 3.3.

3.1 Direct Comparisons to Experiment

Recent advances in high resolution pedestal diagnostics allow for detailed
comparisons of the model with a range of experimental measurements.  Figure 3 shows
results of a case study in which the onset time of ELMs in DIII-D H mode shot 97887 is
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compared to expectations from stability calculations.  A time series of experimental equilibria
are reconstructed, and stability is evaluated with ELITE at each time. As shown in Fig. 2a, the
first ELM pulse reaches the divertor at t~2240ms, shortly after the calculated peeling-
ballooning growth rate rises to a significant value, consistent with peeling-ballooning modes
triggering the ELM.  A further consistency check is provided by comparing the observed
“depth” of the ELM, assessed by a statistical analysis of Thomson scattering data [Fig. 3(b)],
with the calculated width of the most unstable (n=10) peeling-ballooning mode [Fig. 3(c)].
The poloidal structure of the mode is shown in an inset in Fig. 3(c), and we note that this
characteristic structure, localized to the outboard side, is consistent with recent observations
in divertor balance experiments on DIII-D [15].

It has been consistently observed on several tokamaks that both the pedestal pressure
and the size of ELMs is reduced as density is increased [e.g. Ref 16].  To compare this
observation to the stability model, experimental DIII-D equilibria are reconstructed at times
shortly before an observed ELM, for low (shot 105999, neped~2•10

19m-3), medium (106005,
neped~4•10

19m-3), and high (106007, neped~6•10
19m-3) density cases.  Stability and predicted

mode structure are then calculated with ELITE.  Normalized growth rates as a function of
toroidal mode number are shown in Fig. 4.  In each case, the growth rate has reached a
significant value shortly before the ELM occurs, again consistent with peeling-modes
triggering the ELM, even though the high density case has significantly lower pedestal
pressure.  The most unstable wavelength, defined to be the wavelength with largest growth
rate normalized to the diamagnetic frequency (which for a given case is proportional to nωA),
decreases with density as shown in Fig. 4.  Furthermore, the radial width of the most unstable
mode decreases from ~8% of the poloidal flux in the low density case, to ~4% in the medium
density case and ~2% in the high density case.  This increase in most unstable mode number
and decrease in mode radial extent with increasing density both lead to the expectation of
smaller ELMs at high density.  However, we again emphasize that precise quantification of
ELM size likely requires detailed study of ELM and SOL dynamics.

Analysis of Alcator C-Mod discharges shows similarly that ELMs emerge when
peeling ballooning modes go significantly unstable, while “enhanced D-alpha” shots are
generally stable [17].  JT-60U discharges have also been studied, and “giant” ELMs are found
to correlate with broad peeling-ballooning instabilities, while “grassy” ELMs are driven by
instabilities with narrower mode structure [18].

3.2 Comparisons to Experiment using Model Equilibria

The comparisons to experiment described in the previous section provide rigorous
tests of the ELM model, and useful interpretive information on pedestal and ELM behavior in
experiments.  However, such comparisons require detailed equilibrium reconstructions, and
thus can most easily be applied to the interpretation of existing experiments rather than to
prediction of behavior in present or future devices.

Fig.!3.!Case study of ELMs in DIII-D shot 97887 (a)!Above: Dα trace showing occurrence of the first
ELM at t~2240ms.  Below: Calculated growth rate of the most unstable (n=10) peeling-ballooning
mode. (b)!Observed ∆Te/Te from statistical analysis of Thomson scattering data provides a measure of
the radial ELM penetration depth.  (c) Calculated mode structure of n=10 peeling-ballooning mode at
t=2230ms. A contour plot of the 2D mode structure is inset.
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Fig.!4.!Normalized growth rate vs. n, for DIII-D shots at high (106007), medium (106005), and low
(105999) density, at times shortly before an ELM is observed.  As density increases, the unstable
spectrum peaks at shorter wavelengths.

In order to systematically predict pedestal trends, both in present and future devices,
we construct series of model equilibria, varying important pedestal stability parameters, and
calculating MHD stability with ELITE.

Model equilibria are constructed to match expected or measured global parameters,
including the toroidal magnetic field (Bt), total plasma current (Ip), major radius (R), minor
radius (a), average electron density (<ne>), plasma elongation (κ), and triangularity (δ).
Density and temperature profiles are given a hyperbolic tangent shape in the pedestal
[resembling measured profiles, see e.g. Refs. 3,1], and a simple polynomial dependence in the
core:

where Ψ  is the normalized poloidal flux, and ∆ is the pedestal width in Ψ  space.  The
constants a0 and a1 are chosen to give the desired pedestal and axis values, and α1 and α2 are
chosen to approximately match expected core profiles from measurements or transport codes.
Here we use nped=0.71<ne>, n0=1.1<ne>, nsep=0.3<ne>, αn0=1, αn1=0.5, αT0=1, αT1=2.  In the
pedestal region, the parallel current is taken to be equal to the bootstrap current, as calculated
using the Sauter collisional model [19].  In the core, where details of the current are relatively
unimportant, the profile is taken to have a simple polynomial form, with coefficients chosen
to give a central q0=1.05, and the desired Ip.  A number of simplifications are made to
streamline  the equilibrium construction process, including up-down symmetry (while
matching the given separatrix elongation and triangularity), and lack of true X-points.

A first set of model equilibria are constructed to study trends in the pedestal
temperature as the density is varied.  To allow comparison with a number of shots in the DIII-
D database, values of Bt=2T, Ip=1.225 MA, R=1.685m, a=0.603m, κ=1.77, δ=0.0 are used.
The pedestal width on the outboard midplane is taken to be 1.7cm.  The pedestal density is
then varied from 2-9•1019m-3, and at each value of the pedestal density, the pedestal
temperature is increased until stability limits are reached.  Pedestal stability is calculated
using the ELITE code. A sampling of wavelengths, n=8,10,15,20,30,40, are studied, over the
range expected to be most unstable.  A finite growth rate threshold (γ/ωA>0.01) is used as a
threshold for “instability,” eliminating slow growing modes unlikely to trigger ELMs.  We
note that the results presented here and in the following section required the production of
more than 1000 high resolution 2D equilibria, and more than 6000 intermediate-n MHD
stability calculations, but that the efficiency of the ELITE code combined with modern
workstation computers make such calculations feasible.  The calculated stability limits on Tped
as a function of neped are shown by the solid line in Fig. 5a.

In order to compare the calculated stability curve with observations, we use the DIII-D
pedestal database, which contains information on pedestal temperature, density, and width
from fits of high resolution Thomson data to a hyperbolic tangent function [3].  The database
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ne (ψ) = nsep + an0{tanh[2(1−Ψmid ) /∆]− tanh[2(Ψ−Ψmid ) /∆]}+ an1[1− (Ψ /Ψped )
αn1 ]

αn2
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T(ψ) = Tsep + aT 0{tanh[2(1−Ψmid ) /∆]− tanh[2(Ψ−Ψmid ) /∆]}+ aT1[1− (Ψ /Ψped )
αT1 ]

αT 2
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Figure 5: Comparison of calculated pedestal stability boundaries to observed trends in the DIII-D
database.  (a) The calculated maximum stable pedestal temperature as a function of density (solid
line), is compared to the observed variation in pedestal temperature with density during the last 20%
of the ELM cycle (asterisks). (b) The calculated maximum stable pedestal pressure as a function of
triangularity (solid line) is compared with data (asterisks).  The calculated stability boundary with the
bootstrap current artificially set to zero is shown by the dashed line.

contains information on more than 20000 time slices from numerous shots, which can then be
appropriately filtered, to allow comparisons with trends calculated using model equilibria.
Here we select timeslices which are in the final 20% of the type I ELM cycle, with Bt=1.9-
2.05 T, Ip=1.15-1.25 MA, δ<0.2, temperature and density pedestal widths between 1.2 and
2.2cm, and injected power Pinj>1MW.  The data are plotted in Fig. 5a, and provide a
reasonable fit to the calculated stability limits, suggesting both that the pedestal is limited by
MHD stability in the experiments and that the model equilibria are sufficiently realistic to
capture the observed trends.

It is also of interest to study how the pedestal height varies with plasma shape, for
example the triangularity (δ).  For this purpose we construct a set of model equilibria with
Bt=2.08 T, Ip=1.525 MA, κ=1.8, neped=4•10

19m-3, and temperature and density pedestal width
of 1.4cm.  The triangularity is then varied from 0 to 0.45, and at each value, the pedestal
temperature is increased until stability limits, calculated as in the previous case, are reached.
The resulting stability boundary is plotted in Fig. 5b.  The result is again compared to filtered
data, here with Bt=2.05-2.15 T, Ip=1.4-1.65 MA, neped=3.5-4.5•10

19m-3, and temperature and
density pedestal widths between 0.9 and 1.9cm.  The observed strong increase in pedestal
pressure with triangularity is consistent with the stability calculations.  Physically, the
stability limit increases due to increasing second stability access to high n modes as shown
schematically in Fig. 2b, with the most unstable mode dropping from n>~40 at δ=0 to n~10 at
δ=0.45.  The role of the bootstrap current is crucial here.  In the absence of bootstrap current,
second stability access is not opened and the increase in maximum stable pedestal pressure
with triangularity is much weaker, as shown by the dashed line in Fig. 5b.  We note that this
result is consistent with the observed trend that at high collisionality, where the bootstrap
current is strongly reduced, the variation in pedestal height with triangularity is observed to be
much weaker.

In Fig. 5, there is of course significant variation in the observed data, even when
filtered, as there are a number of parameters which are not tightly controlled by the limited
filtering. Furthermore the profile and shape details in the actual shots are only approximately
captured in the model equilibria.  However, it is quite encouraging that general trends in
pedestal height appear to be predictable using model equilibria which approximately match
the most important characteristics (eg, Bt, Ip, <ne>, κ, δ, ∆), and a bootstrap current model for
the pedestal current (which is not accurately measured in present experiments).  This result
encourages the use of this technique to project approximate pedestal constraints that are
expected to pertain in Next Step burning plasma devices, as discussed in the following
section.
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Figure 6: Maximum stable pedestal temperature as a function of normalized pedestal width shown for
a range of mode numbers in (a) ITER and (b) FIRE.  In both cases, high-n modes become second
stable for wide pedestals.  (c) comparison of ITER and FIRE pedestal stability limits in terms of the
pedestal β.

3.3 Prediction of Pedestal Constraints in ITER and FIRE

The need to attain a high pedestal for good confinement, while operating with
sufficiently small ELMs to mitigate erosion of plasma facing components, is especially
important to the successful operation of planned burning plasma experiments such as ITER
and FIRE.  While uncertainty in pedestal transport, in particular the inability to predict the
expected pedestal width, makes pedestal prediction challenging, the methods of the previous
section can nonetheless be used to calculate the pedestal constraints imposed by stability as a
function of the pedestal width and other plasma parameters.

Model equilibria are constructed as in the previous section with reference values of
Bt=5.3 T, Ip=15 MA, R=6.2m, a=2.0m, κ=1.85, δ=0.49 and <ne>=1.0•10

20m-3 for ITER, and
Bt=10 T, Ip=7.7 MA, R=2.14m, a=0.595m, κ=2.0, δ=0.7 and <ne>=3.6•10

20m-3 for FIRE.  To
characterize the pedestal stability constraints, the pedestal width (∆) is varied, and at each
value of ∆, the pedestal temperature is increased incrementally (with the bootstrap current
calculated self-consistently) until stability boundaries are crossed.  Results are summarized in
Fig. 6.  Note that while the maximum stable pressure increases with pedestal width, the
dependence is sub-linear, i.e. a higher gradient can be achieved for narrower pedestals.  This
is because finite-n modes are sensitive to the change in profiles across the pedestal, not just to
the local gradient, and because shear increases as the width decreases.  More details of the
ITER/FIRE pedestal stability study, including studies of variation with triangularity and
density can be found in Ref [20].

4. Summary and Discussion

We propose a model for ELMs and constraints on the pedestal based on MHD
stability of intermediate wavelength peeling-ballooning modes, which are driven unstable by
the sharp pressure gradient and resulting bootstrap current in the pedestal region.  The current
plays a key dual role in the stability physics, on the one hand providing drive for peeling
modes, while on the other hand lowering magnetic shear and, in the presence of shaping,
allowing access to second stability for short wavelength instabilities. Field line bending
stabilizes long wavelength modes, while short wavelengths are stabilized by a combination of
second stability and FLR/diamagnetic effects.  As a result, peeling-ballooning mode of
intermediate wavelengths (typically n~4-40) are often the limiting instability.  The peeling-
ballooning stability constraints imposed on the pedestal height are separate functions of
density and temperature, due to the collisionality dependence of the bootstrap current, and are
in general strong functions of the plasma shape and pedestal width, though not simply linear
with pedestal width.

A new MHD stability code, ELITE, has been developed to allow efficient evaluation
of stability bounds, growth rates, and mode structures of intermediate wavelength instabilities
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in the pedestal region.  ELITE calculations allow quantitative study of stability constraints on
the pedestal, and together with analytic insight lead to a model of various types of small and
large ELM cycle.

Stability calculations on reconstructed experimental equilibria from multiple machines
consistently find that peeling-ballooning mode growth rates rise to significant values just
before ELMs occur.  Parametric studies using series of model equilibria indicate that
observed trends in pedestal height with density and triangularity can be explained by peeling-
ballooning stability, and confirm the important role of the bootstrap current in pedestal
stability.  Model equilibria are also employed to study pedestal constraints in planned burning
plasma experiments.

A number of additional effects, including diamagnetic stabilization, sheared rotation,
and ExB flows, as well as nonlinear dynamics should be considered for a fully quantitative
model of ELMs and pedestal constraints. Simple models of diamagnetic stabilization (e.g.
γMHD>ω*/2) can be used to approximately assess its importance in various regimes [20]. Work
is ongoing on including additional physics into ELITE, and simulations have been carried out
with the nonlinear Braginskii-based BOUT code with current added [21] to allow more
physically complete understanding.  Preliminary results suggest that the linear behavior of
peeling-ballooning modes is similar in ELITE and BOUT.

The level of agreement between the model and observations in both shot by shot
comparisons and parameter scans is strongly encouraging, and suggests that a database or
parametric fit of pedestal stability constraints as a function of key parameters should be a
useful predictive and interpretive tool. Key extensions planned for the model include adding
additional physics, comparing to a broader range of experiments, and developing a pedestal
stability database.
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