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Abstract.  In the vicinity of a magnetic island in tokamaks, the toroidal symmetry in the magnitude of the
magnetic field |B| is broken. This leads to enhanced radial transport fluxes and momentum dissipation. The
radial electric field can be determined from the quasineutrality condition, or equivalently the momentum
equation, on the island magnetic surface. The equation that governs the radial electric field is nonlinear and can
have bifurcated solutions.  This may suppress turbulence fluctuations and improve plasma confinement. The
theory remains valid for a rotating island with an appropriate re-interpretation of the radial electric field.

I. Introduction

Magnetic islands are nearly ubiquitous in magnetically confined plasmas. They play an
important role in fusion plasmas through their effect on plasma confinement. For example,
low m neoclassical islands limit the plasma beta, which is the ratio of plasma pressure to
magnetic field pressure, in fusion grade plasmas [1-3]. Here, m is the poloidal mode number.
When magnetic islands are present, the equilibrium symmetry in the magnitude of the
magnetic field B = |B| is broken. The broken symmetry in B is, however, usually ignored.
This is because the perturbed magnetic field strength δB due to magnetic islands is small
compared with the equilibrium value of B. The symmetry breaking effect on B is thought to

be of order (δB/B)2 << 1. However, if B is not spatially uniform, e.g., B=B(x), with x the
radial variable, the symmetry breaking effect in B is of the order of B′(x0)(∆x), Here, x0 is the
position of the singular layer, prime denotes d/dx, and ∆x is the width of the island [4].

Because ∆x is proportional to (δB/B)1/2, the symmetry breaking effect becomes much more
important than previously perceived. Here, we discuss the implications of this broken
symmetry in B on plasma confinement, and momentum dissipation, and extend the theory to
a rotating island.

II. Magnetic Field Model

The magnetic field strength B in a large aspect ratio tokamak is B/ B0 = 1 - ε cosθ,  where B0

is B at the magnetic axis, ε is the inverse aspect ratio, and θ is the poloidal angle. In the
presence of a magnetic island, the magnetic flux surface is distorted. On this distorted
surface, B is modified to [4]

B
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poloidal flux function at the singular surface, Ψ is the helical flux function, qS
 is the safety

factor and qs
′ = dq/dr at ψS, respectively. The helical angle ξ = m (θ - ζ / qS) in which ζ, is the

toroidal angle. It is clear that toroidal symmetry in B is broken in tokamaks due to the
presence of the islands.

The symmetry breaking is especially significant for low m islands. For an m=2 mode, rw / rs
can be of the order of 10%. This is similar to a rippled tokamak with toroidal ripple strength
of the order of a few percent in the core region which results from the finite number of
toroidal field coils. With this magnitude of symmetry breaking perturbation in B, transport
and dissipation processes in the vicinity of the island will be modified significantly from the
standard neoclassical theory [5-7]. The transport processes in this region are similar to those
in stellarators.

III. Plasma Confinement

Because the toroidal symmetry is broken, trajectories of the toroidally trapped particles, i.e.,
bananas, are no longer closed on themselves in a poloidal plane. They drift off the perturbed
helical flux surface Ψ. This leads to enhanced transport over the conventional neoclassical
fluxes. It has been shown [4] by solving the drift kinetic equation that when the standard
collisionality parameter ν∗  < 1, the flux-surface-averaged particle flux Γ = 〈NV⋅⋅⋅⋅∇∇∇∇ Ψ〉 is
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where N is plasma density, M is mass, Ω is the gyro-frequency, n0 is a unit vector in the

direction of the unperturbed magnetic field, V  is the flow velocity, δW =rW/R, fM  is a

Maxwellian distribution function, angular brackets denote a flux-surface-average on the

island magnetic surface, ν is the collision frequency, C1= 0.684, W = Mv2/2 , H( Ψ)  is a form

factor that is a function of Ψ and can be inferred from results given in Ref.[4]. The flux in
Eq.(2) is applicable in the region outside the island. In cylindrical coordinates, the radial flux

Γr ∼  0.5N(cT/eBr)(m2
w
2δ  ε3/2/ν)H( Ψ)[(dP/dr)/P + e(dΦ/dr)/T + 2.5(dT/dr)/T] if one uses the

approximation ν ∼  v–3 in evaluating the energy integral. Here, T is the temperature, P is the
pressure, e is the charge, Φ is the electrostatic potential, and c is the speed of light. Note,
however, because the transport process is relative to the distorted helical flux surface, the
cylindrical coordinate form is only for the reference purposes. The heat flux Q is similar to
the particle flux given in Eq.(2) except there is an extra factor (W – 5T/2) in the dW∫  integral.
The ratio of the heat flux to that of the standard axisymmetric banana regime flux [5-7] is of

the order of (mδW/εν*)2. Thus, when ν∗  < 1, the island induced transport fluxes can be larger
than the banana flux (for both electrons and ions) and significant when compared with the
ion anomalous transport fluxes. As can be seen from Eq. (2), the flux increases as the
collision frequency decreases.  However, this 1/ν dependence cannot persist indefinitely.
Eventually the finite drift orbit width will limit the transport.  Neglecting super bananas and
the effects of the collisionless detrapping/retrapping, we find, by solving the drift kinetic
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equation, that when the collision frequency (ν/ε) < ωE (RBP)(qs′  rW / qs ), the particle flux
becomes [8]

Γ = - 0.22 N ν (cT/eBr)2(δW /ωE)
2ε-1/2G( Ψ)(P′ /P + eΦ′ /T – 0.5T′ /T),    (3)

where primes denote d/dΨ, ωE = cEΨ/(Br) is the E×B angular speed, EΨ  = - dΦ/dΨ is the
radial electric field, G( Ψ) is a form factor defined in Ref.[8]. The singularity at ωE = 0 can be
removed either by joining Eq.(3) to Eq.(2) or including the effects of the super bananas. The
cylindrical form can be obtained by replacing d/dΨ with d/dr in Eq.(3). The flux depends
nonlinearly on the radial electric field. It decreases when EΨ  increases.

IV. Radial Electric Field

The radial electric field in the vicinity of an island can be determined by the quasi-neutrality
condition: Γ i = Γe, or equivalently the momentum equation. Here Γ i is the radial ion particle
flux, and Γe is the electron particle flux. Combining Eqs. (2) and (3), we obtain an equation
for the electric field [8]

m2 (X/C)3 +  m2 (X /C) 2 + [(Mi /Me)
1/2(νi/ε)2 + (νi/ε)2 ](X/C3)

– [(Mi /Me)
1/2(νi/ε)2 - (νi/ε)2 ]/C2= 0, (4)

where X = ωE (RBP)( qS′ rW / qs ) , C = (cT/|e|Br)(RBP)( qS′ rW / qs )(N′ /N). To obtain Eq.(4), we
only use the 1/ν flux for electrons and neglect the temperature gradient for simplicity. We
have also neglected some form factors, e.g., G( Ψ) in Eq.(4), to keep only the salient
nonlinear feature in X. Equation (4) can have multiple equilibrium solutions. Examples of the
solutions are shown in Figs. 1 – 3 for the parameters C = - 0.5, m = 2 and (Mi /Me)

1/2= 43 with
Mi the ion mass and Me the electron mass. There is one equilibrium solution for νi/ε = 0.1 as
shown in Fig. 1. When νi/ε decreases to 0.0316, there are three equilibrium solutions as
shown in Fig.2. The one in the middle is not stable. The new equilibrium solution has a larger
value of the radial electric field and has the opposite sign. This new equilibrium solution is
likely to have better plasma confinement. As νi/ε decreases further, the two roots on the left
almost merge into one and there is one stable solution with better confinement. This is shown
in Fig. 3. Thus, it is possible that in the vicinity of a magnetic island, the radial electric field
can bifurcate to a large value. This in turn will suppress the turbulent fluctuations due to the
radial gradients of the E× B drift and the diamagnetic drift, and improve the overall plasma
confinement in the vicinity of a magnetic island. This mechanism for the confinement
improvement is the same as the one employed in the H (high) -mode theory [9,10]. The
difference is only in the bifurcation mechanism. It has been observed in tokamak experiments
that plasma confinement improves in the vicinity of lower order rational surfaces [11-15].
The theory presented here may play a role in understanding that phenomenon even though
the control parameter does not depend q because there can be magnetic islands centered on
the lower order rational surfaces in tokamaks. The theory may be also applicable for
stellarators. To check the theory, the electric field in the vicinity of a magnetic island needs
to be measured.
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V. Rotating Island

So far we have assumed that the island rotation frequency ω vanishes (in the laboratory
frame) or is small. However, some islands do rotate. We extend the theory to a rotating

island.  The helical angle ξ  is now defined as ξ = m  (θ - ζ/qS ) + ωt. The magnetic field
model given in Eq.(1) implicitly depends on time. We assume that the electric field parallel
to B, E , vanishes. The electrostatic potential Φ has the form [16]

Φ = -(ωq/mc) (ψ - ψS) + F(Ψ), (5)

where F(Ψ) is an integration constant. We find the theory developed in Sec. III and IV
remains valid for a rotating island if we replace dΦ/dΨ in the non-rotating theory by
dF(Ψ)/dΨ.  Thus, the bifurcation is in the quantity dF(Ψ)/dΨ when the island rotates. Note
that F(Ψ) does not have to be the same as the density profile N(Ψ) or the temperature profile
T(Ψ) in the theory. The profiles of N(Ψ) and T(Ψ) are determined from the particle and
energy transport equations, respectively .

Once the island is allowed to rotate, the theory becomes related to island rotation theory. In
an island rotation theory, there are at least three unknowns that need to be determined: ω,
island width rW, and F(Ψ). It is known that the island rotation frequency ω is determined
from the sinξ component of the Ampere’s law, and the island width is determined from the
cosξ component of the Ampere’s law [17,18,19]. In the past, the profile function F(Ψ) has
been determined using either a transport equation or a vorticity equation with a Braginskii

viscosity [20-22]. Here, we determine it from the (B× ∇Ψ )/B2 component of the total
momentum equation using the island induced nonlinear viscosity:

〈J•∇Ψ〉  = 〈B×∇Ψ•∇•Σ jPj / B
2〉 , (6)

where J is plasma current density, and P j is the pressure tensor for the species j. The
equilibrium quasineutrality condition implies 〈J•∇Ψ〉  = 0. An island rotation theory based on
the theory developed here is under investigation.

VI. Toroidal Momentum Evolution within the Island Magnetic Surface

It has been shown that the fluxes shown in Sec.III are related to toroidal viscosity [23, 24]
Γ=(c/e)〈∇Ψ×∇θ•∇• P)/B•∇θ〉 . In Hamada coordinates B•∇θ  is a flux function and P reduces
to the plasma viscous tensor ππππ. (The plasma pressure term is averaged to zero in Hamada
coordinates.) The toroidal momentum evolution on the island magnetic surface is thus

∂〈NMV•••• ∇∇∇∇ Ψ×∇θ /B•∇θ〉  ∂t = 〈J•∇Ψ〉  - ∑j ej Γ j /c, (7)

where the subscript j indicates plasma species and the particle fluxes Γ  j  are those given in
Eqs.(2) and (3). The left side of Eq.(7) is approximately ∂〈NMRVζ〉/∂t where Vζ   is the
toroidal flow speed. The convective inertia term is neglected in Eq.(7). Equations. (6) and (7)
are equivalent if one neglects the inertia term.
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The viscosity shown in Eqs.(2) and (3) is a result of the resonant modes that form the islands
to remove the singularity at the rational surfaces. For modes that are not resonant on the
rational surfaces, the viscosity calculated in [25] can be used to describe the momentum
dissipation processes when these modes are present [26].

VI. Conclusions

We have developed a theory for the transport processes in the vicinity of a magnetic island in
tokamaks where the toroidal symmetry in |B| is broken. This leads to enhanced transport
fluxes that can be comparable to the anomalous ion transport flux. The radial electric field
can now be determined from the quasineutrality condition, or equivalently the momentum
equation on the island magnetic surface. We find that the equation that governs the radial
electric field is nonlinear. It can have bifurcated solutions. After electric field bifurcation,
turbulence can be suppressed and confinement can be improved [10]. This mechanism may
play a role in the confinement improvement in the vicinity of the lower order rational
surfaces observed in tokamak experiments [11-15]. The theory is extended to a rotating
island. We find the non-rotating theory remains valid for a rotating island in tokamaks if we
replace dΦ/dΨ in the non-rotating theory by d F(Ψ)/dΨ. The theory for a rotating island is
also related to the island rotation theory. Our theory differs from the conventional island
rotation theory in that we determine F(Ψ) from the island-induced nonlinear viscosity instead
of Braginskii viscosity. The theory will be incorporated in NCLASS [27] to simulate
transport processes in tokamaks with islands.
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FIG. 1. The parameter νi/ε = 0.1. There is one equilibrium solution.
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FIG. 2. The parameter νi/ε = 0.0316. There are three equilibrium solutions. The one in the

middle is unstable. The one on the right is the new solution.

FIG. 3. The parameter νi/ε = 0.0001. The two solutions on the left almost merge into one.


