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Abstract. To explore the character of the underlying transport in plasma turbulence, we have followed the
motion of pseudo-particle tracers during the nonlinear evolution of three-dimensional turbulence models. These
calculations have been performed for three different turbulence models and are associated with resistive
interchange, resistive ballooning, and ηi modes, respectively. The finite-scale Lyapunov number is used to

determine the anomalous diffusion exponent. The numerical results for these three models show that the
transport mechanism is superdiffusive with an anomalous diffusion exponent in the range (0.85, 0.92).

1. Introduction

Purely diffusive transport processes cannot explain a variety of transport experiments in
magnetically confined plasmas. Two examples of such experimental results  are scaling of
the confinement time in L–mode plasmas [1] and perturbative experiments [2-4]. Self-
similarity properties of the probability distribution plasma edge function of fluctuations and
turbulent fluxes indicate that the turbulent fluctuations are non-Gaussian [5,6]. All of these
experimental results undermine the transport picture based only on the standard diffusion
mechanisms.

There are many possible mechanisms in plasmas that can lead to anomalous diffusion. The
existence of coherent structures, avalanche type processes, and streamers may significantly
change the character of transport. Here, we use conventional plasma turbulence models based
on three different types of instabilities to investigate induced transport properties. These
models are:  1) the three-dimensional (3-D) pressure-gradient–driven turbulence model in
cylindrical geometry [7] where the underlying instabilities are resistive interchange modes;
2) the 3-D pressure-gradient–driven turbulence model in toroidal geometry [8] where the
underlying instabilities are resistive ballooning modes; and 3) the 3-D ion temperature-
gradient–driven turbulence model [9] where the underlying instabilities are ηi modes. In these

studies it is essential to carry out the calculations over a broad range of space and time scales.
The coupling of processes on these different scales is essential in identifying anomalous
diffusion processes.

For these models, we have followed the motion of tracer pseudo-particles and evaluated the
finite-scale Lyapunov number [10] as a way of determining the transport exponent ν. For a
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normal diffusion process, ν = 1/2. All calculations presented here lead to transport exponents

of ν > 1/2, indicating that all of them are superdiffusive.

The rest of this paper is organized as follows. In Sect. 2, we introduce the pseudo–particle
tracers and discuss the method of evaluating the exponent ν. The numerical results are

summarized in Sect. 3. Finally, the conclusions of this work are given in Sect. 4.

2. Pseudo-Particle Tracers in Steady-State Turbulence

The three turbulence models used in the present calculations have already been studied in
detail [7-9]. Because of limited space, rather than describe these models we refer readers to
these references for detailed explanations. The underlying instabilities for the three models
are driven by a gradient, either the pressure gradient or the ion temperature gradient.
Therefore, for the three models there is a similar coupling between gradient evolution and
turbulence. Changes in the gradient trigger local instabilities in the plasma at the
corresponding resonance surface. The instability locally flattens the pressure profile and
causes an increase of the gradient in the nearby surfaces. Because of this increase, they may
become unstable, and so the process repeats itself in the near singular surfaces. This
mechanism causes a propagation of unstable behavior across all or parts of the plasma.
Eventually, the excess pressure deposited at the core is transported to the edge of the plasma.
This process has the characteristic properties of an avalanche. It is a true avalanche in the
sense that there is propagation both up and down the gradient. The downward propagation is,
in general, dominant.

To study the transport properties of these three models, we use pseudo-particles as tracers.
These tracers are solutions of the equation of motion:
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Here, the velocity is the E × B velocity, because there are no diamagnetic effects included in

these models, and is given in terms of the stream function. The three models are electrostatic;
therefore, all information on turbulence evolution is through the electrostatic potential
(stream function) Φ.

To investigate the dynamics, we have followed orbits of tracer particles. In their evolution,
the tracer particles are either trapped in eddies for times that may be long compared with the
eddy turnover time or they can jump over several sets of eddies in a single flight. These
jumps are normally triggered by the correlated growth of adjacent eddies, as described
previously. Therefore, both characteristic features of the anomalous diffusion, trapping and
flights, are present in these models. Section 3 describes how we can evaluate the trapping
times. However, from a quantitative point of view, we have found no simple way of defining
and evaluating particle flights.

In following the tracer orbits, we have calculated the ensemble average of several powers of
the radial displacement as a function of time. As discussed in Refs. [11,12], because of the
finite size of the system, one can evaluate different moments of the distribution function of
the radial positions of the tracer particle to extract the proper similarity exponent. That is, we

calculate r t( ) − r 0( )[ ]n
= D0t

nν n( ) , where   r t( ) ≡
r 
r  t( ) . Here, the angle brackets indicate

ensemble averaged over the particle tracers. We can evaluate these moments for different
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values of n. Moments with n < 1 give the relevant value of ν. From this calculation, we can

determine whether the diffusion is normal, ν = 0.5, or anomalous, ν ≠ 0.5.

We found [12] that it is more accurate to use an alternative approach [10] to determine the
exponent ν. Following the method of Ref. [10], we initialize a bunch of N particles and

define an initial mean square separation between them as

δ 0( )2 =
1
N

ri 0( )2 − ri 0( ) 2

i=1

N

∑ , (2)

where ri 0( )  is the mean radial position of the bunch of tracer particles. We follow M

bunches of N particles and determine for each bunch the time, Tj(1), taken to increase by a
factor of ρ their initial mean square separation, that is, to have a mean square separation of

δ 1( ) = ρδ 0( ) . The mean time to increase by a factor of ρ the mean separation between

particles is then Tj 1( ) = 1 M( ) Tj 1( )
j = 1

M

∑ . This experiment can be repeated by successive

increases by a factor of ρ of the mean square separation between particles. After m iterations,

the particles will have a mean square separation of δ m( ) = ρmδ 0( ), with the average time

taken to reach this state being Tj m( ) . This allows us to define a finite-scale Lyapunov

exponent of

λ δ m( )[ ] ≡
ln ρ( )
T j m( )

. (3)

For δ → 0 , Eq. (3) gives the standard Lyapunov exponent. A plot of λ as a function of δ has

three well-defined regions. At very low values of δ, λ is independent of δ. In this region, λ is

the Lyapunov exponent. The second region shows a power fall off, λ δ( ) ∝ δ −1/ ν . Here, the

exponent ν is the scaling exponent we are looking for. In the third region, λ falls off fast.

This last region corresponds to particles walking out of the system.

3. Numerical Results

The turbulence calculations are performed over a radial region on the order of 30 to 50 eddy
widths. This size of the turbulence region allows us to have a separation of scales such that δ
has an algebraic range over one decade. For each determination of λ, we have followed an

average of 15 bunches of 2000 particles each. The time evolution required for this
determination is about 200 eddy turnover times.

In Fig. 1, we have plotted λ for the three turbulence models. For more than a decade of

values of δ, λ is well described by a power law. The calculated exponents for these three

cases are close to each other and are given in Table I. They are all greater than 0.5; this
indicates that the transport process is superdiffusive.
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FIG. 1. The finite-scale Lyapunov number λ as a function of δ for the three different turbulence

models listed in Table I.

TABLE I
Turbulence model ν

Pressure-gradient–driven turbulence (interchange) 0.87
Pressure-gradient–driven turbulence (ballooning) 0.88
Ion temperature-gradient–driven turbulence 0.92
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FIG. 2. The finite-scale Lyapunov number λ as a function of δ for three values of β in the case of

resistive ballooning-induced turbulence.
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We have explored different conditions for these turbulence models and have found very little
change on the value of the exponents. For the resistive interchange model, these different
conditions are discussed in Ref. [12]. Here, as an illustration, we discuss the case of the
resistive ballooning turbulence. In this case, the main parameter use in varying the turbulence
conditions is β.

In Fig. 2, we have plotted λ as a function of δ for three different values of β. For the lowest

value, the turbulence spectrum is dominated by a single coherent mode. This case
corresponds to the transition regime from stable plasmas to fully developed turbulence [13].
In this case, it is difficult to find a well-established algebraic scaling region. If it exists, it is
less than a decade in δ. However, for the other two values of β, well into the turbulence

region there is a broad region of algebraic scaling. For both values of β, the scaling exponent

ν has similar value. The β0 = 0.005 case has a somewhat higher value of ν, close to 1. For

β0 = 0.009, the value of ν is given in Table I.
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FIG. 3. Probability distribution function of the radial positions where two particles that started close
together separate for the resistive interchange turbulence model. We have used a requirement of 100
events per bin to minimize noise. In this figure, we have also plotted the positions of the low rational
surfaces.

The transport picture from these calculations agrees with the one put forward in Ref. [14].
Particles are trapped in eddies at the resonant surfaces; they move as jets along the torus.
When the particles reach near the boundary of the eddy, where the trajectories become
stochastic, they travel fast radially and can travel across several eddies in a single flight. This
combination of trapping and flights is consistent with the simple transport picture based on
the continuous random walk formalism [15] and given by the sandpile model of Ref. [11].
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To better understand this picture, we can evaluate the trapping times at different positions in
the plasma column. Let us consider a particle trajectory that we call basic trajectory, and a
second trajectory that starts simultaneously with the first one. The initial condition for the
second trajectory differs from the basic one by a small distance δ0. When the distance δ(t)

between the two trajectories reaches a given value, δf , we measure and store the time, T, such

that δ(T) = δf. At this point, we start a new trajectory for the same basic trajectory, and we

repeat the process. After many iterations, we accumulate a sequence of times that it takes the
trajectories to get δf apart. We also accumulate the information on the radial position where

they separate. This approach is similar to the usual method of determining the Lyapunov
number but for a finite size separation. In the following results, we have used δ0 = 0.001a, the

lowest possible value, because of the limitation of the radial resolution, and δf = 0.003a.

We have evaluated the radial distribution of the separation position of the particles. This
distribution is radially nonuniform. For the resistive interchange turbulence, the minima of
the distribution are clearly associated with low m and n resonant surfaces (Fig. 3). In this
case, the vortex structures are uniform toroidally and it is in the region between eddies where
separation occurs. If we look at the position of minimum T, that is, maximum finite size
Lyapunov numbers, they are uniformly distributed poloidally and around the hyperbolic
points of the stream function. In this case, the cause of stochastization of the orbits is in the
time behavior of these eddies and bursts of particles are associated with the correlated
dynamical evolution that we can interpret as avalanches.

In the case of the resistive ballooning turbulence, the situation is more complicated. At low β
values, when we are in the transition regime from stable to fully developed turbulence, a
single mode dominates the spectrum. In this case, and as shown in Fig. 4 for β0 = 0.001, the

minima of the probability distribution function of the separation points are correlated with the
singular surfaces where the different poloidal components of this mode are resonant. We can
see this in Fig. 4 for the n = 23 mode. However, the poloidal distribution of the separation
point is nonuniform. Eddies associated with different resonant surfaces in the outer region of
the plasma tend to coalesce, and they appear as a radially elongated structures [16]. However,
as we move toroidally, these eddies shrink and this structure separates in different eddies that
twist around the torus with slightly different pitch. This causes poloidal and radial spreading
of eddies that is maximal in the inner region of the torus. In that region, there is a multiplicity
of hyperbolic points for the stream function and the separation points with low T values
cluster there while they are nearly absent in the outer region of the torus. In this system, the
inverse of T can no longer be identified with a finite-size Lyapunov number. This complex
vortex structure by itself may lead to radial transport without need of chaotic behavior of the
orbits. Both vortex structure and dynamics may be involved in causing particle bursts.

For β values in the fully developed turbulence regime, there is no clear way of associating the

minima of the probability distribution function of the separation points with rational surfaces.
An example of probability distribution of separation points for β0 = 0.005 is shown in Fig. 5.

As β increases, there is a tendency towards a more uniform poloidal distribution of the

separation points, although a certain level of in-out asymmetry always exists. In this case, the
separation between transport induced by structures and by dynamical processes may be more
difficult to distinguish.
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FIG. 4. Probability distribution function of the radial positions where two particles that started close
together separate for the resistive ballooning turbulence model with β0 = 0.001. In this figure, we

have also plotted the positions of the rational surfaces associated with the n = 23 mode.
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FIG. 5. Probability distribution function of the radial positions where two particles that started close
together separate for the resistive ballooning turbulence model with β0 = 0.005.

4. Conclusions

Transport of tracer particles in three different plasma turbulence models in the fully
turbulence regime indicates that the transport mechanism is superdiffusive. The transport
exponents calculated from the finite-scale Lyapunov method gives similar values for the
three models and they are around 0.9.
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Although the values of the exponent ν are similar for the three models considered, the

mechanism leading to anomalous diffusion may be different. Understanding the space-time
structures linked to the different models is essential in defining experiments that may clarify
the basic transport mechanism.

Determination of the exponent ν is important for constructing plasma transport models that

incorporate the multiplicity of timescales involved in transport. The transport dynamics of the
tracer particles may be interpreted with fractional kinetics [17], as discussed in Ref. [12].
This interpretation provides a consistent picture of the trapping time distributions and the
radial anomalous diffusion exponent.
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