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Abstract. Based on the now well known and experimentally observed critical gradient length
(R/Lre = RT/VT) in tokamaks, we present a continuum one dimensional model for explain-
ing self organized heat transport in tokamaks. Key parameters of this model include a novel
hystersis parameter which ensures that the switch of heat transport coefficient x upwards and
downwards takes place at two different values of R/Ly.. Extensive numerical simulations of this
model reproduce many features of present day tokamaks such as submarginal temperature pro-
files, intermittent transport events, 1/f scaling of the frequency spectra, propagating fronts etc.
This model utilises a minimal set of phenomenological parameters, which may be determined
from experiments and/or simulations. Analytical and physical understanding of the observed
features has also been attempted.

1 Introduction

Recent experimental work on turbulence driven heat transport in tokamaks has revealed
many features which are consistent with a self - organized criticality (SOC)[1] model of
transport[2]. Notable among these features[e.g. for electron heat transport| are (i) ob-
servation of a threshold [3|(typically sub - marginal) temperature profile with a strong
tendency towards ‘profile consistency’ [4](i.e. relative insensitivity of the measured profile
shape to the radial distribution of heat source); (ii) large scale intermittent transport
events (as revealed by electron cyclotron emission measurements) exhibiting long time
auto - correlations|7]; (iii) characteristic frequency spectra showing scaling behavior, f~*
with @ ~ 1 [6]; (iv) observation of non - diffusive radial propagation of fronts associated
with avalanche events with speeds of order few hundred meters/sec[5] etc. Most of the
features discussed above are generic for turbulent transport in toroidal devices and have
also been observed in studies of core ion transport, edge heat transport, flux driven scrape
off layer transport[7]-[13] etc. Full scale three dimensional gyrofluid and gyrokinetic sim-
ulations have also been carried out and reveal a complex and rich interplay, for example
between the basic temperature gradient driven instability (e.g. ETG) and related modula-
tional instabilities leading to generation of zonal flows, streamers etc[14]. Such simulations
often reproduce many of the features of the transport, observed in experiments[15]. How-
ever, they are typically so complex, that one does not get a good idea about the most
important physics which is responsible for the observed phenomena. At the other end of
the spectrum are highly oversimplified, discrete, cellular automaton type models which
also reproduce many of the observed features[16]; they, however, give us no insight into
the relevant physics issues and appear to be highly contrived.

We follow a middle path considering the following fact: Analytical calculations of
electron heat transport [| have shown that when 7, = dIn7/dInn exceeds a critical value,
short scale, fast growing electrostatic modes genrally known as the electron temperature



gradient modes (ETG) are excited. These modes leave the ion transport unaffected and
enhance the elecron thermal conductivity x. Investigated by several authors[], linear and
nonlinear theories of this mode generally give xgrq of the following forml]:
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where G is the heaviside step function G(z) = 1Vz > 0 and G(z) = OV < 0; Ly, = T/VT
is the gradient length and R is the major radius. X, is the transport coefficient in ab-
sence of temperature gradient turbulence and x;,q. is the transport coefficient associated
with saturated ETG turbulence. Such a form for y finds support from experiments and
simulations]].
Using the above idea, we propose the application of a one - dimensional continuum model
of driven dissipative systems, to the electron thermal transport problem in tokamaks.
This simple model set of equations is able to reproduce all the observed features of the
transport discussed above in terms of a few phenomenological parameters. We offer an
analytic description of some of the observed phenomena and also discuss how the key
phenomenological parameters may be obtained from experiments and/or detailed 3 — dim
computer simulations.

The remaining part of this article is organized as follows: Sec II describes the basic

model used whose results are presented in Sec III. The final we conclusions are discussed
in Sec IV.

2 Basic Model

We adapt a model introduced by Lu [17] for the description of SOC behaviour in solar
flares to heat transport in tokamaks. Such a model has also been applied to the magnetic
substorm problem recently by Klimas et al[18] .It consists of a set of two coupled equations
- a 1-d radial transport equation with sources and a nonlinear relaxation equation for the
turbulence driven transport coefficient y:-
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where we have used normalized variables T = T/T,, © = T/xy, t = /7, X = X7/23,
S = P1/(3nT,/2). P is the input power density which determines the source S. n is
the plasma density, xq, Ty are normalizing variables, 7 is the natural nonlinear relaxation
time of the x equation.

The source function () for x is a double valued function switching between two values
Xmaz a0d Xmin and has hysteresis. For the problem at hand, we have studied two special
forms for the function Q:
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Thus @ changes from Xmin t0 Xmaz When VT (or —VT) exceeds a critical value £ but
switches back from Xmaz 10 Xmin only if VT (or —VT)ls less than (k; (3 is the hysteresis



parameter and takes values less than 1. The presence of hysteresis (i.e. [ # 1) in the
source function @) is crucial for the depiction of SOC characteristics; hysteresis is related
to the physical fact that once the turbulence is excited it may be possible to sustain it
even when VT goes below the linear instability threshold.

In the next section, we present results of our simulations for § # 1. Sec 3.1 discusses
results using Eq. 4(a) and Sec 3.2 discusses those using 4(b).

3 Results

We have numerically solved Eq.(2) and Eq.(3) by finite differencing in space and the time
advancement is carried out by the gear method. We present results for the case when
the source function is of the form S(z) = Sysin(nz/2L), however runs with other forms
indicate that any special form for S(z) is not important. The box size has been fixed at
L = 20 and the value of the critical slope parameter and the hysteresis parameter respec-
tively are £ = 0.04 and 6 = 0.9. X;nezr and X are chosen to be 2 and 0.2, respectively
and S is chosen in the range 103 to 10 2. As explained later, these dimensionless values
correspond to typical numbers characteristic of tokamaks like JET, TORE-SUPRA and
D-III D.
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FIG. 1. Subcritical profiles superimposed for various times. The inset shows the prob-
ability distribution function of the temperature gradient 0T /0x (a) Propagation of fronts.

The variation of velocity of fronts U with (b) varying Xmaz, (¢) varying 1/7/2

3.1 Ciritical gradient based model

The plot in Fig.1 (left side) obtained numerically shows clearly that profile of T'( after an
initial transient) approaches a state where the VT is below the critical slope at nearly
all positions. In our numerical experiments we included (1)nearly linear T'(z) ~ kz, (2)
random T'(x) > 0, initial profiles. In each of these cases, the instantaneous T profile very
rapidly approaches a subcritical state. This result is consistent with the experimental
observation of sub - marginal thresholds. Furthermore, in time, a complex sequence of
avalanches carrying the flux of 7" through the system are observed as required for the SOC
state. The detailed results exhibited by this model can be summarized as follows: (i) the



simulations show (Fig.1a) propagating front like structures in the gradient of 7" field (as
well as in the diffusivity x). These fronts propagate with a constant velocity U. (ii) The
velocity U is found to scale as \/Xmaz/7 (Fig.1b,c). (iii) The total energy of the system
defined by E(t) = [ dzT?(z,t) (which is like the thermal energy nT if n(z) and T'(z) are
taken to be identical functions for simplicity) shows quasiperiodic behavior with a steady
linear rise with time (loading) and a sudden crash (unloading) displaying a saw tooth form
(Fig2a). (iv) The amplitude AE = FE, 4, — Emin and frequency v of such saw tooth events
are in general of statistical nature. However, their mean values are observed to depend on
the parameters x,;, and the source strength Sy. (v) The value of AE and v also depend on
the hysteresis parameter 5. The mean value < AE > scales linearly with (1—3?) (Fig.2b).
We note that the model makes predictions which are in conformity with special features
of electron thermal transport in tokamaks. Thus observations (i) and (ii) are related to
the radialpropagation of avalanche fronts across a discharge and observations (iii) - (iv)
show the intermittent bursty nature of the transport (Fig.2c). While the observations
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FIG. 2. Loading Unloading cycle: (a) Plot of E vs time (b) Mean Cycle Amplitude AE
vs 1 — 8% (c) Evolution of Flux

(i), (iii) and (iv) above are similar to those obtained earlier by Klimas et al.[18], for
the substorm problem, (ii) and (v) are new results and have been obtained by us after
extensive numerical simulations. We now provide a simple theoretical interpretation of
the above results; such an interpretation has not been attempted in earlier work.

Our simulations show propagating spatio temporal front structures in 97/0z (and
so also in ). Well within the boundaries of z space these fronts typically move with
a constant velocity. We observe that the propagation speed depends on the parameters
Xmaz, 3 and T with the scaling of U & \/Xmaz /7 as shown in Fig.1. Such a scaling can
be understood from the following simplified analysis. The front structure in the diffusion
coefficient arises due to the switching of Q) from X;ni t0 Xmaz, at locations where the local
slope exceeds the critical value k. The subsequent evolution of the diffusivity with time
(so long as @ remains at Xe) as governed by Eq.(3) is given by the following expression

X(t) = Xmaz {1 - exp(—t)} + Xminexp(_t) (5)

For Xmin < Xmaz (as indeed is the case) and for a time ¢t < 1 we can approximate the
expression for x as X = Xmast- We may now write the diffusion equation as 07 /0n =
0T /0x® where 1 = Xmaet’/2; exact solution shows diffusion in x — 7 variables, 2 ~ n ~



Xmazt?/2 giving a front propagation speed in dimensional variables as U =

|8

SRV
Figures (1b,c) give plots illustrating this scaling as observed in the numerical simulations.

The quasiperiodic oscillations of energy (Fig 2a) having a saw tooth character in time,
signifies a slow building up of the temperature profile from Bkz towards kx by the source
function followed by a sudden crash. The maximum amount of energy that can be released
by the system in a crash can be estimated from the difference of the energies of the two
states. The state T' = Bkx, thus defines the minimum energy and is given by E,;, =
[T?*dx = (%k? [ 2%dx = (%*k?L?/3. On the other hand the maximum energy that can be
retained by the system so that T = kz is given by Ey,0, = [T?dx = k? [ 2%dx = k*L3/3
The difference AE = Ejup — Epin = (1 — %) Epaz = (1 — ﬁQ)kQ%B gives the maximum
amplitude of AE in the growth and decay cycle that the system can exhibit. The observed
amplitudes, in general are typically lower than the above estimate beacuse L, the box size
should be replaced by [ representing the typical avalanche size in above expression. Thus
the average energy release in the avalanches is < AE >= (1 — 32)k%?/3, confirming the
observed scaling with 3 which can be seen from the plot of Fig.2b and mentioned earlier
in the point (v) of the summary of results.

The parameter X, essentially determines the spatial correlation length [, for 7" [note
that for xmm = 0 during the growth phase, Eq.(2) turns into an ordinary differential
ie. . = 0]. AS Xmin is increased it correlates T over disparate spatial regions by dif-
fusion. Thus a high value of x,,;, might seem desirable. However, the dissipation due
t0 Xmin should not exceed input via source term leading to a damped final state. Hence
an optimum X, can be estimated by the critical balance condition X,,;,0*T/02% =
— Sy sin(mz/2L) which implies that T = Ty sin(nx/2L) where X (7/2L)2Ty = Sy. The
value of T can be estimated by requiring that maximum value of the slope does not
exceed the critical value of k£ at any location; thus (07/0%)mer = (Tom/2L) < k = 0.04.
For our simulation we have L = 20, Sy = 3 x 10~* implying that X, = 0.1 for best
avalanches.

We now discuss in somewhat more detail the implications of the results of this model
for the electron thermal transport in tokamaks. First, we look at some numbers. If we
take 1o = 2.5 cms, Ty = 10 KeV, 7 &~ 10 secs, Xmaz ~ 10°cm?/sec, n ~ 103 x 5¢m 3,
P ~ 1MW/m?, we are considering a 50cm radius plasma with a peak temperature of
about 8 keV with ~ 10MW of input power which is like the plasma in Tore - Supra
experiment; this choice gives us dimensionless parameters L = 20, S = 1073, X0z ~ 2 as
shown in our sample simulation. Experiments like JET and D-III D also give a similar
parameter range for the simulations. The choice of 7 and X, needs comment. 7 is a
nonlinear relaxation time for the ETG turbulence which describes the time taken by x
to stabilize at xmq; after VT crosses the critical value k. This involves saturation of the
ETG turbulence, growth of streamer like modulational instabilities (since they dominate
the ETG transport) and their saturation by Kelvin - Helmholtz secondary instabilities.
Estimate of 7 can be made from large scale simulations and/or from experiments; they
give a value of order 7 ~ 103L, /Vin = 100usecs where Vi, /Lt is the typical ETG growth
rate. Xmae 1S the upper limit to which ¥ can rise; it typically never reaches there because
avalanches strike. Thus Ymaz ~ 3¥meas and is taken as ~ 105 em? /sec. The choice of
hysteresis parameter 3 = 0.9 is somewhat ad - hoc; its main effect, however, is to limit
the size of the fluctuations in energy.



3.2 Ciritical gradient length based model

In this section, we shall present the results from the V7'/T model described in eq (4).

Following parameters have been chosen for this simulation: £=0.25,6 = 0.9,7=1, X4z =

12, Xmin = 0.2, S, = 0.1 and L = 20. This implies 7,=0.1KeV and P=1.2MW. The
boundary conditions used in this model are: 2L (z = L)=0 and xIL(z = 0) = [ S(z)dz.
As shown in fig 3(a),the PDF of VT'/T indicates submarginality - the most probable value
of VT'/T lies below k. Dashed line here indicates the critical value k. The observation that
1/ Ly, mostly lies below this line reinforces the above fact. In Figure 4(a), a time series of

flux,I" is shown. We define I'(z,t) = x(x,t)0T/0z. The power specra obtained from a the
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FIG. 8. The probability distribution of the 1/Lyre = VT /T from a time series accumulated
at a point.

time series of flux (Figure 4b) indicates a 1/f® with a ~ 1 type of power spectrum. Such
a power spectrum is a signature of self organized criticality. Experimental observations
on various tokamaks have reported similar spectra [eg see Politzer et al [|]. Along with
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a power law tail, Hurst parameter H, also characterizes such events (politzer et al[|] and
references therein). This parameter characterizes the behaviour of the autocorrelation at
large lag times. For a long time correlation, 1/2 < H < 1, while 0 < H < 1/2 indicates
anticorrelation. We have made measurement of Hurst parameter from our simulation data
by the method of R/S statistics (Figure 5a). The simulation data presented here gives



H = 0.94. Having H so close to one indicates that events are occurring on all timescales,
down to the numerical the time step. The value obtained by us is somewhat larger than
that obtained from actual experiments (Politzer et al (POP)). To further analyze our

10

10°

10°F | 10° |

R/S
P(r)

10'F ] 107

10° L L L 102 .
10° 10! 10° 10° 10" 10" 10°
Block Size r

FIG. 5. a)Hurst parameter from a time series of flur. b)Probabilty distribution func-
tion P(I'r)

studies of the statistical properties of Flux as obtained from our system of equations, we
have also obtained the probabilty distribution function of flux. We define the probability
distribution function P(I'r) = Np,/NW where Nr, is the number of data values that
fall between I'r and 'y + W, W is a narrow interval starting at I'r and N is the total
number of data values. Figure 5b shows the probability distribution function (PDF) of a
flux time series accumulated at a point near the edge.

4 Conclusions

Using a 1-d model has reproduced many observed features of electron thermal transport.
These include: (i) sub - marginal temperature profiles (ii)profile resilience (iii) intermittent
large scale transport events (iv) power spectrum (v) radially propagating fronts with
speeds of order (Xmaz/27)*? ~ 200m/sec. (vi) measurements of the PDF of flux and and
the hurst parameter indicate occourence of avalanche events on all time scales.

It would be intresting to to verify the physics described here and to determine the phe-
nomenological parameters introduced. There is already abundant experimental data on
critical threshold gradient length Lz.. Active experiments with localized heat sources like
ECRH could be carried out to measure X,naz, Xmin, the relaxation time 7, the hysteresis
parameter 3 etc. Similarly, simulations and analytical theory could be used to under-
stand the magnitudes of these phenomenological parameters and would thus elucidate
the physics of the phenomena a little better.

Finally, we emphasize that the paradigm introduced here for electron thermal trans-
port is much more general and may be applicable to a number of observations in mag-
netically confined plasmas (with appropriate modifications) such as ELMS, flux driven
transport in scrape - off - layers, ion thermal transport and particle transport in core re-
gions etc. It may also be useful to extend these 1-d models to situations involving coupled
transport equations in density, temperatures, currents, etc.
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