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Abstract

One of the central open questions in our attempt to understand microturbulence in fusion plas-
mas concerns the role of finite β effects. Nonlinear codes trying to investigate this issue must
go beyond the commonly used adiabatic electron approximation - a task which turns out to be
a serious computational challenge. This step is necessary because the passing electrons are the
prime contributor to the parallel currents which in turn produce the magnetic field fluctuations.
Results at both ion and electron space-time scales from gyrokinetic and gyrofluid models are
presented which shed light on the character of finite β turbulence in tokamaks and stellarators.

1. Ion scales

Here, “ion scales” refers to scales of the order of ρi and somewhat larger, but still small com-
pared to global scales. This comprises, in principle, electron drift waves, ion temperature gra-
dient (ITG) modes, resistive ballooning modes, and their respective turbulence. In this section,
we focus on core ITG turbulence which is traditionally studied in the adiabatic electron limit
(cf. Ref. [1] and references therein). Using Landau fluid simulations, our primary interest is the
effect of a finite plasma beta on ITG turbulence, and this necessarily requires a self-consistent
electron treatment as in the earlier collisional drift wave turbulence models.[2, 3] In the latter
case, finite β turns drift waves into drift Alfvén waves by making the adiabatic response of the
electrons electromagnetic.[4] This, of course, also effects the turbulence.[5] Drift wave and ITG
turbulence occur typically at frequencies of (0.1 − 1) cs/LT and perpendicular wavenumbers
of (0.1 − 1) k⊥ρs, where c2

s = Te/mi, ρs = cs/Ωi, and LT is the temperature gradient scale
length. This is to be compared to the electron and Alfvén transit frequencies, vte/qR and vA/qR
respectively, where v2

te = Te/me and v2
A = B2/4πnemi, and 1/qR is the wavenumber associ-

ated with the field line connection length. The salient parameter for an electromagnetic electron
response is β̂ = (cs/LT )2(qR/vA)2, the drift Alfvén parameter. At zero beta, the salient param-
eter for a nonadiabatic electron response is µ̂ = (cs/LT )2(qR/vte)

2, which for finite β remains
a measure for the importance of electron Landau damping. In the Ohm’s law, electron inertia
competes with electromagnetic induction, which due to Ampère’s law incorporates two factors
of k⊥ρs. Hence, electromagnetic effects change the electron dynamics not only for β̂/µ̂ > 1,
but already for β̂/µ̂ > (k⊥ρs)

2, that is, for practically any situation of interest in tokamak
plasmas, even in the edge. Electromagnetic effects enter the general dynamics whenever β̂ is
close to or larger than unity, a situation for which what is called the “Cyclone base case” is
marginal (cf. Ref. [1]; the profile information needed for nonadiabatic electrons is available at
http://www.er.doe.gov/production/cyclone/).

Edge turbulence, which does not concern us here, is treated elsewhere. Key results include the
role of the drift wave nonlinear instability [3], its relationship to strongly electromagnetic ITG
turbulence [6], and the competition between drift wave and resistive ballooning turbulence.[7]
These studies found that it is imperative to diagnose the energetics in the context of the fully
developed turbulence. Core turbulence, on the other hand, may be defined as the parameter
regime in which µ̂ < 1. For the Cyclone base case, the salient parameters are β̂ = 0.464
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Figure 1: (a) Electromagnetic ITG source (solid lines) and sink (dashed) spectra for the Cyclone
Base Case. The contributions are magnetic transport by electrons (’v’), ExB fluxes of density
(’n’), electron (’t’) and ion (’i’) temperatures, Landau damping (’l’), and collisional resistivity
(’c’) and thermal conduction (’k’). (b) The corresponding parallel envelopes of the square
amplitudes of φ̃ (’p’), ñe (’n’), T̃e (’t’), T̃i (’i’) and the nonadiabatic h̃e (’h’). (c) Parallel
envelopes in the “electrostatic” case, and (d) in the case with a mass ratio mi/me = 450.

and µ̂ = 0.0254, and also the (very low) collisionality, ν̂ = νeLT/cs = 0.033. The other
nominal parameters are chosen as in Ref. [1]: 2LT /R = 0.29, ŝ = 0.78, LT /Ln = 0.321,
mi/me = 3670, and Ti/Te = 1 for the background. For a baseline comparison, the warm ion
Landau fluid model DALFTI [8] was run at these parameters and also for a companion case with
β̂ = 0.03, which we call “electrostatic.” The nominal grid was 256× 256 for the perpendicular
drift plane with an anisotropic resolution of 4 hx = hy = ρs. This is required to resolve every
rational surface in the spectrum to avoid spurious electron grid modes. For the parallel direction,
16 drift planes within a single poloidal connection length were used. The geometry was a flux
tube model with globally consistent boundary conditions [9], using a shifted metric procedure
to represent slab and toroidal eigenmode types equally well [10].

In both cases, the turbulence is nonlinearly driven in a fairly narrow region in ky space, weakly
coupled to a wider bath of stable modes (see the source/sink spectra shown in Fig. 1a for the
nominal case). The transport is very (even qualitatively) different, however: Qi is twice as
large in the nominal case with Qe = 0.6Qi, while in the “electrostatic” case, Qe was indeed
negligible owing to the generally adiabatic character. In the nominal case, the transport by
electrons moving along disturbed magnetic field lines (“magnetic flutter”) was also substantial,
so that the total electron heat flux was about the same as the ion one. We also find significant
differences in the mode structure (Figs. 1b and 1d for the nominal and low beta cases). Electron
nonadiabaticity is represented by finite T̃e and h̃e = ñe − φ̃, which is robustly enabled by the
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Figure 2: β scaling of the three ExB transport fluxes for low collisionality edge turbulence. The
nominal scaling is shown (red), together with the results keeping linear magnetic flutter only
(blue), or nonlinear flutter only (green), or without either flutter piece (magenta). Magnetic
flutter is stabilizing initially but loses this influence in the relevant regime (β̂ > 0.3) as the
nonlinear effects assume dominance, leaving a trend consistent with L-mode transport. Note
that this scaling is at constant B, not at constant ρ∗.

finite β. The ballooning character of the electron dynamics is reflected by the larger amplitude
and narrower envelope of φ̃ compared to ñe and T̃i. This very narrow structure was confirmed by
a test run with 4 times the parallel resolution. We therefore find a sort of ITG/kinetic ballooning
mode, following the ion and electron mode structure, respectively. These same diagnostics
found edge turbulence to have a more drift-wave like character in the electrons.[6, 7] Ballooning
is evidently of much more relevance in the core than in the edge. The same is true of electron
heat flux transport down disturbed magnetic field lines.

The small value of µ̂ makes the computations very expensive. A series of tests was carried out
to see if the extreme mass ratio could be relaxed; values of µ̂ of 0.05, 0.1, and 0.2 were used,
corresponding to mass ratios of about 1800, 900, and 450. The ion heat transport Qi was found
to be sensitive to this, as values of 0.854, 0.497, and 0.620 resulted, compared to the nominal
1.49. In each case, the electron heat transport was about Qe = 0.6Qi. The nonmonotonicity
of the result reflects a mode structure change as µ̂ approaches unity: for small values of µ̂, the
Qi,e values first decrease with increasing µ̂. But for µ̂ >∼ 0.1, the mode structure begins to
acquire a character more reflective of drift waves than of ballooning modes, especially in the
relationship between φ̃ and p̃e (Fig. 1c). Simulations using reduced mass ratios (e.g., of the order
of 102) in order to lower the computational requirements will therefore end up with µ̂ values
near unity, erroneously recovering results too similar to edge turbulence. Finite β ITG/drift
wave turbulence is evidently too subtle and complicated to be consistent with the very simple
linear mixing length picture which has resulted from electrostatic computations with adiabatic
electrons.

The specific effects of all of the finite β ingredients were also investigated in the context of
edge turbulence (β̂ = 1 and µ̂ = 5) but with relatively low collisionality (ν̂ = 1). The results
(see Fig. 2) were much the same as in a similar study done in a gyrofluid model [11]: there is
a regime, well below the nominal ideal ballooning stability boundary (αM = ŝ), in which the
transport rises sharply with β, and the cause of this is found to be specifically the “magnetic
flutter” nonlinearity associated with ∇‖. The linear modification of ∇‖pe due to Ã‖ is stabiliz-
ing, and is responsible for the falling trend with β in gyro-Bohm units (i.e., with constant ρ∗,
not to be confused with the trend with constant-B in an experiment). Runs conducted without
either flutter piece found the rising trend discussed in Ref. [5]. At moderate β, the effect of the
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nonlinear flutter piece is to cancel the linear one, giving the rising trend. This is accompanied
with the mode structure changes noted above. The mode is still properly characterised as ITG,
because T̃i > φ̃ and is more strongly ballooned (cf. Ref. [6] for these signatures), but since
φ̃ > p̃e and is in turn more strongly ballooned, the electron part of the system is more balloon-
ing like. Indeed, we find that the contribution due to p̃e in the vorticity dynamics does become
larger than that due to J̃‖, confirming this mode structure.

2. Electron scales

Nonadiabatic electrons also play a role in the dynamics of electron temperature gradient (ETG)
modes on much smaller space-time scales. For λDe <∼ ρe, ITG and ETG modes are perfectly
isomorphic in the electrostatic and adiabatic regime. Under these circumstances, it is therefore
permissible to transfer linear results from the one to the other by simply interchanging the
species labels. In the nonlinear regime, this symmetry is broken, however, due to a subtle
difference in the response of the adiabatic species.[12] Whereas in sheared slab geometry, ETG
and ITG simulations still saturate at similar normalized levels (consistent with mixing length
expectations, χ ∼ γmax/k2

θ ∼ ρ2vt/LT ), toroidal ETG modes sometimes go to much higher
amplitude than their ITG counterpart and exhibit streamers, i.e., radially elongated vortices.
This behavior can be interpreted in the framework of secondary instability theory. Depending
on the degree of “slabness” (as characterized by the intrinsic parallel velocity component) of
linear electrostatic ETG/ITG modes, we find that one of two distinct processes may dominate
as nonlinear saturation mechanism.[13] Perpendicular shear in the parallel flow of the linear
instability drives a strong (hereafter, “Cowley”) secondary, described in detail in Ref. [14].
Importantly, this secondary is not sensitive to the form of the adiabatic response and thus leads
to the same (mixing-length type) transport level in both slab cases. Predominantly curvature
driven modes, on the other hand, are broken up by a secondary (hereafter, “Rogers”) instability
that is driven by the perpendicular shear in the eigenmode’s perpendicular E × B flow.[12,
15] Because the Rogers secondary is significantly weakened on ρe scales (as compared to ρi
scales) by the adiabatic ion response, a curvature driven ETG mode tends to saturate at a much
higher normalized level than both its ITG counterpart and mixing length expectations. With
this enhancement, associated with high-amplitude streamers, ETG-induced transport can be
comparable to electron energy transport induced by ITG modes and trapped electron modes.

On the nature of high-amplitude streamers. The single most striking feature in nonlinear
ETG simulations (here, we use the gene code which is described in Ref. [12]) is the oc-
currence of radially elongated vortices with large fluctuation amplitudes in certain parameter
regimes.[12] Streamers have been observed both in tokamak [12, 13, 15] and in stellarator
[16, 17] simulations if and only if the underlying long-wavelength instabilities have a clear
toroidal (vs. slab) character. For large aspect ratio tokamaks with circular cross section and
small Shafranov shift, this is the case for ŝ >∼ 0.4 and R/LTe � R/Lcrit

Te .[12] In the pres-
ence of streamers, the fluctuation and transport levels can be boosted by more than an order
of magnitude with respect to mixing length expectations. Streamer aspect ratios computed via
the radial/poloidal autocorrelation functions of φ̃ are typically of the order of 2.[17] This value
seems somewhat low compared with the visual impression and might indicate that refined mea-
surements are called for (i.e., inspired by percolation theory). The dominant modes for Cyclone
base case parameters have kθρe ∼ 0.15 [12, 13] and exibit a phase shift of ∼ π/3 between
φ̃ and T̃ (which is basically equal to that of the corresponding linear streamer).[12] At higher
values of kθ, the spectra exhibit a power law behavior with exponents that seem to be quite
universal.[13, 17] The turbulent transport (both with and without streamers) is always predom-
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Figure 3: Snapshot of flux surface averaged values of φ̃, Ω̃ ≡ ṽ′Ey, and Ã‖ as a function of the radial
coordinate x (normalized to ρe).

inantly electrostatic.[12, 16]

On the role of zonal flows and fields. Zonal flows and fields are purely radial (kθ = k‖ = 0)
variations of φ̃ and Ã‖ associated with E× B flows and magnetic field fluctuations. They can
be self-generated by the turbulence and may in turn act as its dominant nonlinear saturation
mechanism. But how important are they on ρe scales? A typical snapshot of the flux-surface
averaged values of φ̃ and Ã‖ from a stellarator simulation is shown in Fig. 3 together with the
E×B shearing rate Ω̃ ≡ ṽ′Ey.[17] In this case, the space and time averaged RMS values of Ω̃ and
and the magnetic shear fluctuation, s̃ ≡ qR B̃′y/B, are given by Ω̃rms ≈ 0.12 vte/R ∼ 0.3 γmax

and s̃rms ≈ 0.018 where γmax is the maximum linear growth rate. This is in stark contrast
to results from ITG turbulence where Ω̃ can significantly exceed γmax (e.g., Ω̃max/γmax ∼ 14
in Ref. [18]). In the ITG case, one obtains the zonal flow saturation criterion Ω̃rms <∼ γmax

only after correcting for the ineffectiveness of the high frequency component of Ω̃. The zonal
components of ETG turbulence contribute only 1% or so to the total φ̃rms.[17] This is again in
contrast to the findings in the ITG case where zonal modes with kxρi ∼ 0.1 tend to contribute
significantly or even dominate the fluctuation free energy contained in φ̃ (see, e.g., Ref. [18]
and references therein). Moreover, since magnetic shear variations primarily affect the linear
growth rates of the ETG modes driving the turbulence [19], a value of s̃rms ≈ 0.018 is certainly
too small for zonal fields to play a significant role. Similar zonal flow/field saturation levels as
the ones reported here have also been found in ETG simulations of tokamak plasmas. Thus, we
may conclude that, at least for a significant region in parameter space, zonal modes on ρe scales
tend to play a subdominant role in the turbulent dynamics. (A possible exception could be the
simulation for tokamak edge parameters described in Ref. [20].)

A predictive numerical model for turbulent transport. Building on these results and in-
sights, we now develop an ab initio numerical model which is shown to even quantitatively
explain the nonlinear gyrokinetic simulation results.[13] The basic idea is to predict the satura-
tion amplitude by balancing primary (γ`) and secondary (γnl) growth rates. To do this, one must
first calculate γnl. At sufficiently high amplitude, γnl ∝ φ̃`. Using the gs2 code (see Ref. [12]
and references therein), we thus compute γ0

nl by freezing a given linear eigenmode at a fiducial
high amplitude (φ̃` = φ̃0

` ), and using this state as the “equilibrium” for a sequence of initial
value calculations with varying kx. (In the sequel, we consider kx/ky = 0.5 as a representative
value.) Given φ̃0

` , γ
0
nl and γ`, the RMS amplitude of φ̃ in the turbulent state is estimated by

φ̃/φ̃0 = γ`/γ
0
nl. (We note that all our results are in the strong turbulence regime, where χe ∝ φ̃,

so that γ`/γ0
nl also roughly predicts the anomalous transport coefficient.) Somewhat surpris-

ingly, we find that ETG driven turbulent transport is well described by this relatively simple
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Figure 4: χe from nonlinear gyrokinetic ETG simulations [open triangles] for our nominal parameters
and ŝ = 0.8 (R/LTc ∼ 4.6), ŝ = 1.5 (R/LTc ∼ 7.1), and ŝ = −1 (R/LTc ∼ 6.3), together with

numerical [dashed lines] and semi-analytical [full circles] predictions.

model as can be seen in Fig. 5. Here, the following physical parameters have been used (be-
sides the ones mentioned in the figure itself): R/Ln = 2.2, q = 1.4, and τe = 1/τi = Te/Ti = 1,
corresponding to the “Cyclone base case”. A single fit parameter (related to the ratio of the heat
flux to φ̃) was held fixed for all the points in the figure. Importantly, neither the linear growth
rate nor the maximal value of γ/〈k2

⊥〉 predicts the variation found in the nonlinear simulations.
For example, the negative shear cases withR/LTe−R/LTc > 6 have maximized γ/〈k2

⊥〉 values
which exceed those of the ŝ = 0.8 cases. It is the variation of the secondary growth rate as the
linear eigenfunction changes in response to the equilibrium parameters that correlates with the
difference in the nonlinear flux. The secondary growth rates exhibit a strong dependence on
magnetic shear as the secondary transitions from a Rogers secondary (moderate positive shear)
to a Cowley secondary (negative shear). The good agreement between gyrokinetic simulation
and numerical model encourages us to persue a semi-analytical treatment of the balance be-
tween primaries and secondaries, condensing several important pieces of information about the
saturated nonlinear state into into simple algebraic formulas.

Towards an analytic theory of ∇T driven turbulence For ŝ >∼ 0.4 and R/Ln <∼ R/LTj �
R/Lcrit

Tj
, ITG/ETG modes have a predominantly toroidal character and the Rogers secondary

is the dominant nonlinear saturation mechanism. The region close to criticality (algebraic ex-
pressions for R/Lcrit

Tj
in tokamaks and in the stellarator Wendelstein 7-AS have been derived in

Refs. [21] and [16], respectively) as well as the low/negative shear region involve the Cowley
secondary and are more difficult to treat. This task is left for future work. Using a host of
linear gyrokinetic simulations, we find that under these conditions the linear growth rates of
long-wavelength ITG/ETG streamers may be well described by the simple algebraic formula

γ` =
α1

τj

vtj
LTj

(kθρj − kc
θρj) , kc

θρj =
LTj
qR

τ
1/2
j , α1 ≈ 0.25 . (1)

Here, finite β and λDe effects have again been neglected. Note that Eq. (6) is independent
of ŝ and R/Ln. Interestingly, this result can also be derived in the framework of gyrofluid
theory. Employing, e.g., the basic model described by Eqs. (1-3) in Ref. [22], and generalizing
their Eq. (3) to ∂tT + A∇‖v + µA |∇‖|T = 0 one gets exactly the above result with α1 =
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2µ/(1 + 4µ2). Using µ = (8/π)1/2 as suggested by Hammett et al.[23] leads to the prediction
α1 ≈ 0.285 which is very close to the gyrokinetic result.

The second ingredient in our ETG/ITG turbulence theory is an algebraic formula for the non-
linear growth rates of Rogers secondaries in the presence of a large amplitude linear streamer.
(Here, we will focus on the ETG case, the ITG case can be treated in an analogous fashion.)
According to Fig. 4 in Ref. [15], its maximum with respect to kx is given by

γnl =
α2

τe

vte
LTe

(kθρe)
4

[
eφ̃

Te

LTe
ρe

]
(2)

with α2 ≈ 0.18. For ŝ 6= 0, the primary modes twist with the field lines, leading to an increase
of the effective kθ. We will take this effect into account by replacing k4

θ in Eq. (8) with 〈k2
θ〉2

where the angular brackets denote weighting with |φ̃(θ)|2 ∝ exp(−νθ2). A good fit formula for
ν, inferred from dozens of linear gyrokinetic simulations for ŝ >∼ 0.2 and R/LTe � R/Lcrit

Te , is
ν = 0.53 q (kθρe) + max{0.09, 0.19 ŝ2} (q/τe) (R/LTe) (kθρe)

2.

Having established analytical expressions for the growth rates of primaries and secondaries, we
can now explicitly balance the two, γ` = γnl. In the strong turbulence regime, this yields

χe ≈
[
eφ̃

Te

LTe
ρe

]
ρ2
evte
LTe

=
0.15

τ
3/2
e (1 + ŝ2/2ν̂)2

(
qR

LTe

)3
ρ2
evte
LTe

(3)

after maximization over kθ where ν̂ is ν taken at kdθ = 4kcθ/3. Evaluating this expression for the
four points with positive shear shown in Fig. 5, we get surprisingly good agreement. Note that
another prediction of this semi-analytical model is that the poloidal length scale of the dominant
modes is given by kdθ . For Cyclone base case parameters (including ŝ = 0.8) we get kdθ ∼ 0.13,
in reasonable accordance with nonlinear simulation results, exhibiting kdθ = 0.15±0.05.[12, 13]

An analogous treatment of ITG modes and associated Rogers secondaries leads to the esti-
mate χi ≈ G(q, ŝ, τi) ρ

2
i vti/LTi which is one order down in R/LT compared to the ETG case,

Eq. (15). A scaling like this has indeed been observed in nonlinear simulations of ITG turbu-
lence with adiabatic electrons.[1] Moreover, the prediction G(q = 1.4, ŝ = 0.8, τi = 1) ∼ 2
is roughly consistent with the simulation results. It should be kept in mind, however, that in
contrast to the ETG case, ITG turbulence can be controlled by zonal modes, an effect which
is not accounted for by the present theory. This is true, in particular, as the system approaches
marginality.

3. Summary

We have investigated the effects of finite β and nonadiabatic electrons, presenting results for
both ion and electron space-time scales, and both tokamaks and stellarators. At ion scales, elec-
tromagnetic effects through passing electrons are able to completely change the nonlinear mode
structure and therefore the qualitative character of the turbulence. An electron-to-ion mass ratio
scan at finite β reveals a transition from core-like to more edge-like behavior with decreasing
mi/me. This sets serious limits on attempts to reduce the computational effort for two-species
simulations by using fake mass ratios. Gyrokinetic simulations of ETG and ITG turbulence
show that the linear symmetry between them is nonlinearly broken. This finding can be ex-
plained in terms of a secondary instability theory which may also serve as a basis for simple
numerical or semi-analytical models. The latter are shown to successfully capture key features
of the streamer-dominated turbulent state even quantitatively. This raises hope that more com-
prehensive analytical theories of temperature gradient driven turbulence might be developed
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along those lines. Generally speaking, our results show that the standard interpretation of tur-
bulent transport as some type of isotropic diffusion (random walk) process is not universally
applicable.
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