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Abstract
A statistical model for the bifurcation of the radial electric field  Er is analyzed in

view of describing L-H transitions of toroidal plasmas.  Noise in micro fluctuations is
shown to lead to random changes of  Er, if a deterministic approach allows for more than
one solution.  The probability density function for and the ensemble average of  Er are
obtained.  The L-to-H and the H-to-L transition probabilities are calculated, and the
effective phase limit is derived.  Due to the suppression of turbulence by shear in  Er, the
limit deviates from Maxwell's rule.

I. Introduction
The identification of the mechanism of L-H transition is fundamental to the reliable

prediction.  The tests of theories both with observation of event and with the statistical
database are necessary.  For the explanation of the rapid transition, strong nonlinearity
has been taken in theories providing hysteresis of radial electric field  Er [1].  Comparison
of theories with database has not yet given the conclusive transition mechanisms [2].

We present a statistical model of the Er bifurcation underlying the L-H transition in
toroidal plasmas.  Nonlinearity of micro-fluctuations statistically induces random noise in
the meso-scale  Er.  Being kicked by this random noise, transitions between the L- and H-
states occur in a probabilistic manner.  A Langevin equation can then be formulated
including the mechanism for hysteresis of Er.  The probability density function (PDF) for
and the ensemble average of Er are obtained.  The flux of probability density and the
transition rate between L-and H-states are calculated.  The ensemble average of  Er does
not show hysteresis in contrast to the deterministic model.  The phase limit is different
from the cusp boundaries and is given by the condition that the H- and L- states have
equal probability.  This article presents the statistical theory by which theoretical models
could be compared with statistical threshold database.

II. Statistical equation
We consider a thin layer near the tokamak edge and analyze the dynamics of  Er

(averaged over the magnetic surface) in the presence of micro fluctuations.  The radial
extent of  Er  has the scale length  which is assumed constant here for the simplicity.
The random noise is induced by the convective nonlinearity in the vorticity equation

  V ◊—V  associated with micro fluctuations.  The dynamical equation of  Er  is given as a
Langevin equation as [3]

   ∂
∂t

X + L X = w t g, (1)

where normalization is introduced for the electric field and time as    X = erpEr/T  and

   t = t cs/2qR and  w t  is a white-noise.  (  rp: ion gyroradius at poloidal magnetic field,  T :

plasma temperature.)  The damping term,    L X = 1 + 2q2 – 1
qR/rsecsni Jr, is the

normalized current.  The term g denotes the noise current Jr
n.  Explicit forms of average

current  Jr  and g  are discussed in ref.[3].  One chooses an example case as
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   L X = Im Z X + in* ◊ X + XNC +
nb

nb + aX4 1/2
exp – nb + aX4 1/2

– gzonal X    (2)

where  Z X  is the plasma dispersion function,   XNC is the neoclassical drive and is of the
order of    – r p ne

– 1dne/dr ,    n * = n iiqRcs
– 1  is the normalized ion collision frequency,

   n b = e –3/2n * ,    e = a/R,  a  denotes the orbit squeezing [4,5] and   gzonal is the zonal flow
excitation rate combined with shear viscosity damping [6].  Zeros of L and relation with
L-H transition have been discussed in literature [1].  When    L X = 0 has one solution, the
solution describes either the L-state or H-state.  If multiple solutions exist, the bifurcation
has a hysteresis and the hard transition is possible to occur.

When the correlation time of fluctuations  tac is much shorter than the response
time of  Er , the statistical average of micro-fluctuations is calculated by treating  Er  as a
constant parameter.  In this dc-limit, fluctuation level has been given as

   f 2
= 1 + wE

2tac
2 – 1

f L
2

, where   f L
2

 is the fluctuation level in the L-mode state,

   wE = B– 1 dEr/dr is the    E ¥ B shearing rate [7, 8].  Using an evaluation    dEr/dr ~ Er/ , one

has    wE
2tac

2 = tac
2 B– 2 – 2 Er

2 .  In the following,    f
L

2
 and global plasma parameters (like

temperature) are treated as control parameters.  The amplitude of the noise is a nonlinear
function of X , and is explicitly given as

   
g = tac

R2 k 0
2r i

2 f 2

a z

1
1 + U X 2 , (3)

where    f = e f L/T ,    tac = taccs/2qR , and    U = taca/
2

.

III. Statistical properties
The probability density function (PDF) of X,  P X , ensemble average, and

transition rate between the L-and H-modes are studied.

3.1 Probability density function
The Fokker-Planck equation of  P X  is deduced from the Langevin equation, and

the stationary solution of PDF   Peq X  is expressed as    Peq X µ g– 1 exp – S X  by use
of the nonlinear potential [9]

   
S X = 4L X ¢ g X ¢ – 2

X ¢ dX ¢
X

.  (4)

The minimum of  S X  (apart from a correction   ln g ), i.e., zero of L, predicts the most

probable state of X.  Figure 1(a) illustrates PDF   Peq X  for various values of parameter

  XNC.   The PDF has two peaks, representing the hysteresis.   However, the state   X = XL

is dominant if   XNC < XNC
c  holds (    XNC

c ~ 0.4 for the parameters or Fig.1(a)), and   X = XH  is
dominant if   XNC > XNC

c .

3.2 Ensemble average
 When one solution of bistable branches is chosen as an initial condition, many
transitions in between   XH  and   XL  branches occur in a long time, and  P X  reaches to

  Peq X .
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Fig.1  (a) PDF of X in a stationary state (for fixed collision frequency   n * = 0.1 ).  Solid
line is for    XNC = 0.4 ~ XNC

c , dotted line (L-mode is dominant), and broken line (H-mode is
dominant) .  (b) Heat flux  qr  as a function of global gradient   XNC  .  (  qr  is in a unit of

   cs
2p0/2Rqr p .)  Deterministic model shows the cusp catastrophe (thin line).  Ensemble

average is shown by the thick solid line. (For parameters, see [3].)

The ensemble average   X = X Peq X dX changes smoothly as the global

control parameter varies.  The heat flux is given by the relation

   qr = – cc + c turb — p0 . (5)

The turbulent transport coefficient has the form    c turb = c N0XNC
1.5 1 + UX 2 – 1

 including
the effect of the electric field shear stabilization [1].  The ensemble average of the heat
flux  qr  is illustrated by a thick curve in Fig.1(b).  Even though the deterministic theory
gives a hysteresis, the ensemble average does not show the hysteresis.

3.3 Transition rates
The transition probability is obtained by calculating a flux of probability density

from the Fokker-Planck equation, and is expressed by use of the potential  S X .[10, 11]
The rates (frequencies) of the L-to-H transition and back-transition are given as

   
rL Æ H =

L LL m
2p exp S XL – S Xm , (6a)

   
rH Æ L =

L HL m
2p exp S XH – S Xm , (6b)

respectively, where the time rates   L L, m, H  are given as    L L, m, H = 2X ∂L/∂X  at

  X = XL, m, H .  Note that   L L, m, H  are normalized, being of the order unity.  The transition
rates is explicitly evaluated by use of the integrals

   
S XL – S Xm = –G IL ∫ – G L X 1 + UX 2 2

dX
Xm

XL

, (7a)
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S XH – S Xm = –G IH ∫ – G L X 1 + UX 2 2

dX
XH

Xm

(7b)

with the coefficient    G = 2 tac
– 1a2

zR
– 4k 0

– 4r i
– 4 f – 4

.  Integrals  IH and IL are calculated
and are of the order unity.  The transition and back-transition rates are

   rL Æ H = L LL m 2p – 1 exp – G IL  and    rH Æ L = L HL m 2p – 1 exp – G IH ,
respectively.  See ref.[12] for details.

3.4 Phase limit
The phase limit between the L-mode and H-mode (e.g.,   XNC

c ) is defined by the
condition that both have equal probability.  The probability that the state is found in the L-

state is given as    PL = rH Æ L / rL Æ H + rH Æ L .  That for the H-state is

   PH = rL Æ H / rL Æ H + rH Æ L .  The condition   PH = PL , i.e.,    rL Æ H = rH Æ L , is given

from Eq.(6) as

   S XH = S XL + 1
2 ln L L/L H .  (8)

Apart from a weak logarithmic term, it is approximated as   S XH = S XL , i.e.,

   
L X 1 + UX 2 2

dX
XH

XL

= 0 .  This result is an extension of Maxwell's rule.  When the

noise is independent of X, this relation reduces to the condition 
   L X dX

XH

XL

= 0 .  The

phase limit is different from the cusp boundaries.  A phase diagram in a control parameter

space    nb, XNC  is obtained explicitly, and is transformed onto the   n, T  plane (Fig.2).
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Fig.2 Domain of the L-mode and H-mode on the   n, T  plane. (   n, T : normalized.)
Solid line shows the ensemble average, while dotted lines indicate the ridges of the cusp.

IV. Summary and implication to experiments
A statistical model for the bifurcation of the radial electric field  Er is analyzed in

view of describing L-H transitions of toroidal plasmas.  The probability density function
for and the ensemble average of  Er are obtained.  The L-to-H and the H-to-L transition
probabilities are calculated, and the effective phase limit is derived.
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--------------------------------------------------------------------------------------------
Experiments Theories

--------------------------------------------------------------------------------------------
Threshold Database

Most probable Statistical theory
transition boundary (Ensemble average)

Range of data (width of PDF)

Boundaries of possible Deterministic part of theory
transition points (ridges of cusp)

Study of an event Deterministic part of theory
Rate of  Er-change at transition (Model of nonlinearity)

--------------------------------------------------------------------------------------------

Table 1: Approaches in comparison study of experiments and theories.  Appropriate
theoretical method must be employed to relevant experimental approaches.

Implications to experiments are as follows:  First, the cusp-boundaries of H-mode
and the ensemble average of the transition condition in plasma parameters are different.
They may show the different parameter dependencies.  They must be judged by both the
ensemble averages of statistical models which have a noise source, and by a value of
deterministic model.  Due to the noise, each transition occurs being scattered around the
ensemble average.  This must be noticed in the future comparison of experimental
database with many theories.  Second, the ensemble averages of  X  and  qr  do not
show a hysteresis against global parameters   XNC, in contrast to the deterministic model.
Third, the observation of hysteresis in experiments critically depends on the speed of
global parameter change.  Relevant comparison between the theory and experimental
observations is summarized in Table 1.  Analyses for more realistic cases are reported.
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