Overview of Recent Experimental Results
From the DIII–D Advanced Tokamak Program

K.H. Burrell for the DIII–D Team

General Atomics, P.O. Box 85608, San Diego, California 92186-5608
email: burrell@fusion.gat.com

Abstract. The DIII–D research program is developing the scientific basis for advanced tokamak (AT) modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Since the last International Atomic Energy Agency (IAEA) meeting, we have made significant progress in developing the building blocks needed for AT operation: 1) We have doubled the magnetohydrodynamic (MHD) stable tokamak operating space through rotational stabilization of the resistive wall mode; 2) Using this rotational stabilization, we have achieved $\beta_N H_{89} \geq 10$ for $4 \tau_E$ limited by the neoclassical tearing mode; 3) Using real-time feedback of the electron cyclotron current drive (ECCD) location, we have stabilized the $(m,n) = (3,2)$ neoclassical tearing mode and then increased β_T by 60%; 4) We have produced ECCD stabilization of the $(2,1)$ neoclassical tearing mode in initial experiments; 5) We have made the first integrated AT demonstration discharges with current profile control using ECCD; 6) ECCD and electron cyclotron heating (ECH) have been used to control the pressure profile in high performance plasmas; and 7) We have demonstrated stationary tokamak operation for $6.5 s$ ($36 \tau_E$) at the same fusion gain parameter of $\beta_N H_{89} / q_{95} \approx 0.4$ as ITER but at much higher $q_{95} = 4.2$. We have developed general improvements applicable to conventional and advanced tokamak operating modes: 1) We have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time ($3.8 s$ or $25 \tau_E$) with constant density and constant radiated power; 2) We have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gases; 3) We have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points.

1. Introduction

The DIII–D research program is developing the scientific basis for advanced modes of operation in order to enhance the attractiveness of the tokamak as an energy producing system. Previous studies [1–6] have shown that an attractive tokamak requires high power density (which demands high toroidal beta $\beta_T = 2 \mu_0 (p/B_T^2)$), high ignition margin (high energy confinement time τ_E), and steady-state operation with low recirculating power (high bootstrap fraction f_{BS}), as well as adequate divertor heat removal, particle and impurity control. These requirements demand an integrated approach, optimizing the plasma from the core, through the edge pedestal and into the divertor. To utilize advanced tokamak physics in future devices, we are developing predictive understanding validated in integrated physics demonstrations.

Since the last International Atomic Energy Agency (IAEA) meeting, we have made substantial progress in creating the building blocks required for advanced tokamak (AT) plasmas. Techniques to increase the tokamak beta limits are part of these building blocks. By using rotational stabilization of the resistive wall mode (RWM), we have increased the β_T operating region stable to the external kink mode by about a factor of two up to the ideal wall beta limit [7–9]. As is shown in Fig. 1, we have utilized these techniques to produce AT discharges with $q_{min} \geq 1.5$ and $\beta_N H_{89} \geq 10$ which were sustained at that $\beta_N H_{89}$ level for 680 ms or about $4 \tau_E$ [10]. Here, $\beta_N = (a B_T / I_p) \beta_T$ and H_{89} is the ratio of τ_E to the energy confinement time given by the ITER89P scaling law [11]: a is the plasma minor radius (half width), B_T is the toroidal field and I_p is the plasma current. In terms of absolute parameters, these plasmas simultaneously achieve $\beta_T = 4.2\%$, fusion gain $\beta_T \tau_E = 0.66\%$ s, poloidal beta $\beta_P \geq 2$, bootstrap current fraction $f_{BS} \geq 0.65$ and total non-inductive current fraction $f_{NI} \geq 0.85$. The duration of the high performance phase in these discharges is limited by neoclassical tearing modes (NTM) which become more unstable as the current profile evolves and the minimum safety factor q_{min} drops. This gives extra motivation to our NTM and current drive research.

We have demonstrated real time feedback stabilization of neoclassical tearing modes using electron cyclotron current drive (ECCD) for both the $(m,n) = (3,2)$ [12,13] and, in preliminary
experiments, the \((m,n) = (2,1)\) mode [13,14]. The feedback system was used to precisely position the ECCD on the island in order to suppress the modes either by altering the toroidal field slightly (about 0.5%) or by small radial shifts of the plasma position (about 1 cm for the \((3,2)\)). In cases of \((3,2)\) stabilization, \(\beta_T\) was increased 60% above the level in the presence of the mode, up to a level 20% above that achieved prior to the onset of the NTM. This latter stabilization was done in sawtoothing discharges, a reactor relevant regime. This real time feedback control represents the first use of active feedback control to position the ECCD and suppress the NTM.

Another part of the AT building block set is control of the profiles of current density and plasma pressure. Initial experiments integrating ECCD current profile control into high performance AT discharges were done with 2.5 MW of electron cyclotron (EC) waves in discharges with \(q_{\text{min}} \geq 2\), and \(\beta_N^{*H_{89}} = 7\) which were sustained for the 2 s length of the ECCD pulse or about 18 \(\tau_E\) [15]. The total noninductive current driven in these shots reaches 90%. The \(q\)-profile changes associated with the ECCD trigger core barrier formation in these discharges, since both electron and ion thermal transport are reduced in the core of these discharges after the EC power is applied. ECCD has also been used to alter the current density profile in quiescent double barrier (QDB) plasmas [16].

Both electron cyclotron heating (ECH) and ECCD have been found to decrease peakedness of the plasma density profile in QDB discharges [16]. Applying EC power to an already formed core barrier results in some increase in core thermal transport but a much bigger increase in particle transport. The net result is that the density profile flattens much more than the pressure profile. Owing to the strong cryopumping of QDB discharges, density profiles in these plasmas are more peaked than desired, leading to significant impurity peaking [17]. This peaking is substantially reduced with EC from a ratio of 2.13, peak to line-averaged, to 1.5.

Utilizing some of the plasma control tools developed for the AT work, we have also demonstrated an improved operating scenario for ITER [18]. These discharges have the same fusion power gain parameter \(\beta_N^{*H_{89}}/q_{95}^{2} \cong 0.4\) as ITER but at \(q_{95} = 4.2\), significantly higher than the \(q_{95} = 3\) in the ITER design.

In addition to the advanced tokamak research, a second theme in the DIII-D research over the past two years is the development of general tokamak improvements which are applicable to both the AT and conventional tokamak. Our work on the quiescent H-mode (QH-mode) demonstrates a solution to the pulsed divertor heat load in future burning plasma devices caused by edge localized modes (ELM) [17,19,20]. In addition, we have demonstrated disruption mitigation using a massive gas puff of either neon or argon [21-23].
reduces thermal and mechanical vessel loading while simultaneously suppressing runaway electrons in the current quench. For vertical disruptions, we have also used the plasma control system to achieve real-time disruption detection followed by gas puff mitigation.

General magnetohydrodynamic (MHD) stability considerations suggest that high triangularity, double-null discharges are attractive because of their high beta limits. Divertor designs for these were thought to be difficult for reactors because of the restricted space for the inner divertor components. However, our recent experiments have shown that balanced double-null discharges have almost no heat and particle flux to the inner strike points. Particle flux reductions of a factor of 5 and heat flux reductions of a factor of about 7 to 20 have been demonstrated [24,25]. These low heat and particle fluxes should substantially ease the inner divertor design problem.

2. Higher Beta Limits

2.1. Resistive wall mode stabilization

Our primary concept for an advanced tokamak includes both high power density, which means high \(\beta_T \), and steady-state operation, which requires high bootstrap fraction for economical current drive. Both of these requirements demand operation at the highest \(\beta_N \) possible. One of the key instabilities which limits \(\beta_N \) is the external kink mode. Accordingly, one of the foci of our AT program is wall stabilization of the external kink [7–9].

As is summarized schematically in Fig. 2(a), the beta limit set by the external kink can be raised significantly from \(\beta_{N\text{no-wall}} \) to \(\beta_{N\text{ideal-wall}} \) by the presence of a perfectly conducting wall near the plasma. This effect occurs because of the global structure of the kink mode, which exists both inside and outside the plasma. However, as is indicated in Fig. 2(b), the finite resistivity of most wall materials modifies this optimistic picture. The external kink now couples to the RWM, which can grow on a time scale \(\tau_W \), which is characteristic of the time needed for fields to penetrate the wall. This time constant is quite long compared to the usual kink growth time, which makes it possible to use active coils to compensate for the resistive effects of the wall; the effects of this feedback compensation are shown schematically in Fig. 2(b). In tokamaks with unidirectional beam injection, there is an additional stabilizing effect due to plasma rotation relative to the wall, which was first discussed by Bondeson and Ward [26,27]. As is shown in Fig. 2(c), if the rotation is sufficiently fast, the RWM is stabilized. Feedback stabilization and rotational stabilization can be combined to improve the overall stability.

Initial attempts at rotational stabilization of the RWM showed that it was transiently successful but that the plasma rotation slowly dropped after the plasma beta crossed the no-wall beta limit [28]. This ultimately lead to beta collapse and, sometimes, disruption. A key insight here was provided by Boozer [29] who proposed that, near marginal stability, the plasma has a resonant response to any non-axisymmetric external magnetic field component which has the same mode structure as the RWM. In other words, the RWM can resonantly amplify small external error fields and increase the drag on the plasma rotation when \(\beta_T \) is above the no-wall limit. If these external, non-axisymmetric

![Fig. 2. Growth rates of the external kink mode as a function of the normalized plasma pressure \(\beta_N \). Shown are (a) stabilization of the external kink mode by an ideal wall, (b) stability of the RWM branch of the external kink mode for a wall with finite conductivity also showing the stabilization of the RWM by magnetic feedback with increasing amounts of feedback gain, (c) stabilization of the RWM by increased amount of plasma rotation and dissipation.](image-url)
fields are reduced, the drag is reduced and the plasma rotation can be maintained. Using the C-coil set on DIII-D to reduce the external error field, we have been able to sustain the plasma rotation and operate routinely above the no-wall beta limit. The most elegant way to determine the correct C-coil program to minimize the error field is to use the same feedback sensor and power supply system that was first developed for RWM stabilization [30,31]. As can be seen in Fig. 3, with a proper feedback algorithm, the plasma rotation can be sustained and the beta value raised all the way to the ideal wall beta limit. For these discharges, the ideal wall beta limit is approximately a factor of two above the no-wall beta limit. This demonstrates a substantial increase in the stable tokamak operating space.

As is shown in Fig. 4, preprogrammed C-coil currents which approximate the results of the feedback programming are able to sustain the plasma rotation and allow operation above the no-wall limit. This demonstrates that the magnetic feedback details are not important for rotational stabilization. By adjusting the β value through feedback control of the neutral beam heating system, we have produced sustained operation for up to 1.5 s, limited by duration of power supply operation; this is 10 τ_E or 300 τ_W. On the usual ideal MHD kink growth times, this represents essentially steady-state operation. Comparison of the rotational stabilization with predictions of the MARS code [32] shows qualitative agreement but more work needs to be done on the plasma dissipation details.

Feedback stabilization of the RWM has also been successfully demonstrated in cases where the rotation alone is insufficient to stabilize the mode [8]. Experimental results [33] are in good qualitative agreement with modeling predictions [34–36] that RWM stabilization is improved with radial magnetic field sensors inside the vacuum vessel wall as compared to radial field sensors outside the vessel wall and further improved with poloidal field sensors inside the vessel; these latter have faster time response and also do not couple to the field applied by the C-coil. A new set of twelve control coils inside the vacuum vessel is predicted [7,34,37] to allow feedback stabilization up to essentially the ideal wall limit even in the absence of rotation. These new coils will be operational for the 2003 experimental campaign.
The basic ideal MHD theory of the external kink, no-wall beta limits is in excellent agreement with experiment. By looking at the damping of the RWM at various beta levels, we have checked in detail that the calculated and measured no-wall beta limits agree [8]. In order to have a complete predictive understanding in this area, more work needs to be done on the theory of rotational stabilization, especially on the dissipation mechanism, and on feedback control in the presence of plasma rotation. Because rotation effects are always important in DIII-D, even in cases where rotation is too small for complete stabilization, our lack of quantitative understanding of rotational stabilization significantly affects all our detailed, quantitative theory-experiment comparison of wall stabilization. The most recent comparisons are summarized by Chu et al. [37].

2.2. Neoclassical tearing mode stabilization

Neoclassical tearing modes are magnetic islands destabilized and maintained by a helically perturbed bootstrap current and represent a significant limit to performance at higher β_p [38]. Theory predicts [39,40] that these confinement degrading islands can be reduced or completely suppressed by precisely replacing the missing bootstrap current in the island O-point with radially localized ECCD; this was first demonstrated in the ASDEX Upgrade tokamak [41]. The ECCD must be precisely located on the island for maximum effectiveness; misalignment of the current drive by only 2.5 cm from the proper location produces negligible stabilization. In order to routinely achieve this alignment, the DIII-D computerized plasma control system (PCS) has been programmed to feedback on the amplitude of the Mirnov probe signals in order to adjust the ECCD location for optimum suppression [12-14].

Since the initial stabilization of the (3,2) mode in sawtothing discharges reported at the last IAEA meeting [42,43], we have now demonstrated that we can both stabilize the (3,2) mode and then increase the β_T value. As is illustrated in Fig. 5, ECCD suppresses the (3,2) mode even in the presence of large sawteeth and fishbones [14]. After the mode amplitude is essentially zero, the PCS no longer has the input needed for the real-time feedback and the location of the ECCD is held fixed. The neutral beam power is then programmed to increase; the beta increases 60% (20% higher than the peak before the onset of the NTM) before the mode reappears. The reappearance is due to the Shafranov shift of the plasma at higher beta, which moves the $q = 3/2$ surface about 2 cm away from the ECCD location; this reduces the ECCD stabilization substantially. There was not enough time left in the beam pulse on these shots for the PCS to go through another search and suppress cycle to adjust the ECCD location. We have now developed a method for the PCS to track changes in the $q = 3/2$ location even in the absence of the Mirnov signal so that, in the future, we can maintain the NTM stabilization as beta changes.

Preliminary experiments have been done to apply the same NTM stabilization techniques to the (2,1) NTM [13,14]. As is shown in Fig. 6, complete suppression of a (2,1) NTM was obtained with 2.3 MW EC power. β_N was temporarily increased to about 3.5 to excite the NTM; complete suppression was achieved at $\beta_N = 2.3$ when the PCS adjusted the ECCD location to the optimum position. As is also shown in Fig. 6, ECCD 10 cm off the optimum had little effect. No attempt has been made yet to raise the β_T value after (2,1) NTM suppression.
3. Profile Control

3.1. Current density profile control

In order to investigate optimum current profile shapes in machines like DIII-D where the pulse lengths are only a few current relaxation times τ_{CR}, shaping the current profile in the initial phase of the discharge remains an important tool. A standard technique to form broad or transiently hollow current density profiles is heating the plasma during the initial current ramp, thus decreasing the resistivity and slowing the current diffusion. Feedback control of the ECH during the current ramp has allowed a new level of control over this initial current density profile in DIII-D. As is shown in Fig. 7, by adjusting the requested T_e and ECH deposition location, a range of q-profiles can be obtained. This feedback control of T_e substantially increases the reproducibility of the initial current density profile, since small changes in initial plasma density no longer influence T_e. In addition, the same T_e time history can be obtained over a substantially wider range in density, essentially decoupling T_e and n_e and broadening the operating space. Replacing neutral beam with EC power also allows reduction in beam-produced particle input.

After the initial current profile has been set at the end of the current ramp, ECCD allows detailed control of the current density profile for the duration of the ECCD (2 s at present). In order to make best use of the available EC power, we have done extensive transport modeling in order to develop our experimental plans. This coupling of detailed modeling and experiment has created a great improvement in the way we conduct these experiments. Accurate modeling requires a verified theory to allow computation of the ECCD. We have performed extensive theory-experiment comparisons over the past several years [44,45]. These investigations show excellent agreement between the measured ECCD and the predictions of quasilinear theory embodied in the CQL3D code [46]. One key aspect of this agreement is the strong beta dependence of ECCD efficiency for the off axis current drive needed for AT plasmas with hollow current profiles. We have achieved the ECCD efficiency needed to carry out our planned AT developments in the next several years.

Fig. 6. Comparison of two shots demonstrating stabilization of the (m,n) = (2,1) NTM when the ECCD location is properly adjusted to suppress the mode. In both shots, neutral beam power is increased before 4500 ms to trigger the mode and then lowered again. The red trace in the bottom box with the ECCD 10 cm off optimum location demonstrates that this decrease in the beam power has little effect on the NTM amplitude. Shown in (a) is the amplitude of the $n=1$ NTM at the Mirnov sensors mounted on the vessel wall, and in (b) the power from the EC system.

Fig. 7. Illustration of the effect of T_e feedback using ECH to shape the q-profile at the end of the current ramp in several discharges. For the red and blue cases, ECH power was adjusted to match a preselected time history of the electron temperature at $\rho=0.4$. The black traces are for a no-ECH comparison case. For the blue curve, the ECH deposition was at $\rho=0.2$ while for the red case it was at $\rho=0.4$. (a) Electron temperature at $\rho=0.4$. (b) Electron temperature at $\rho=0.2$. (c) ECH power. (d) safety factor q versus normalized radius ρ at 1.1 s into each shot.
Based on our modeling, we have carried out initial, integrated AT experiments which combine high beta operation ($\beta_N = 2.8$, $\beta_T = 2.9\%$) at high $q_{\text{min}} \sim 2$, good plasma confinement with $H_{99} \geq 2.5$ and high non-inductive current fraction (about 90%). In these discharges, ECCD at $\rho = 0.4$ is integral in producing negative central magnetic shear and helping to form a weak internal transport barrier for both electrons and ions. This core-barrier formation with ECCD was not anticipated in the modeling. It is in distinct contrast to the typical observation of confinement deterioration when using ECH/ECCD in plasmas with $T_i/T_e > 1$.

Figure 8 shows the temporal evolution of a representative shot of this class of discharges. An H-mode is induced early in the current ramp; coupled with neutral beam injection (NBI), this slows the penetration of the current leading to a slightly negative central magnetic shear profile with $q_{\text{min}} > 2.5$ at 1.5 s into the discharges. β_N is then increased by feedback control of the NBI to $\beta_N \sim 2.8$ and held there for the remainder of the discharge. Application of 2.5 MW ECCD at 1.5 s increases the negative magnetic shear by raising $q(0)$ to about 5 while q_{min} remains ≥ 2 for the 2 s duration of the ECCD pulse. Comparisons with cases with radially launched ECH (hence no current drive) indicate that the current profile modification is almost entirely the result of the application of ECCD as the ECH case and an NBI only case show little difference in the q-profile. Analysis indicates that ECCD generates a total current of about 130 kA, which is consistent with the CQL3D prediction. The remainder of the plasma current is provided by neutral beam current drive (~25%), bootstrap current (~55%) and Ohmic current (~10%). Accordingly, the non-inductive current is about 90% of the total current.

As is shown in Fig. 9, there is excellent agreement between the changes in the internal magnetic field line pitch measured by the motional Stark effect (MSE) diagnostic [47] and the results of the current drive modeling carried out using the measured profiles. The comparison with radial launch ECH cases shows the localized nature of the ECCD and again illustrates the good agreement between ECCD theory and experiment.

3.2. Plasma pressure profile control

Pressure profile control tools are also important for AT plasmas since, in shaped plasmas, broad pressure profiles generally lead to higher MHD beta limits and higher fusion reactivity [48]. The discovery of core transport barriers in the early 1990s showed that it was possible to create a variety of core pressure profiles, depending on the exact plasma conditions used. Initial work on core transport barriers showed that manipulation of the core $E \times B$ via neutral beam injection and altering the Shafranov shift through negative central shear q-profiles were important methods of creating core transport barriers. Our recent experiments have shown that ECH and ECCD can also be used as transport barrier control tools.
As was mentioned in the previous section, ECCD into one type of AT plasma has altered the \(q \)-profile and triggered a weak core transport barrier in all four transport channels: electron and ion thermal transport, particle transport and angular momentum transport \([15]\). This barrier is not seen in the radial launch ECH or pure NBI comparison cases; accordingly, we conclude that the change in the \(q \)-profile was the important factor. Preliminary analysis using the GKS gyrokinetic stability code \([49]\) indicates that both \(\mathbf{E} \times \mathbf{B} \) shear stabilization and Shafranov shift (\(\alpha \)) stabilization are important in these discharges. The presence of Shafranov shift effects may be particularly important, since Shafranov shift stabilization reduces turbulence growth rates over a wide range of spatial scales which affect both electrons and ions while \(\mathbf{E} \times \mathbf{B} \) shear affects the longer wavelength turbulence which primarily affects ions.

Although the confinement improvement owing to core barrier formation can be beneficial, in some cases the profiles can become too peaked. One example of this is the very peaked density profiles produced in QDB discharges which lead to quite peaked impurity density profiles \([17]\). Injecting about 2 MW of ECH or ECCD into already established core barriers in the QDB discharges substantially broadens the density profile, as is shown in Fig. 10. The most dramatic results are seen with EC resonant at \(\rho = 0.2 \); weaker effects over a somewhat broader region are seen with injection at \(\rho = 0.4 \). Accordingly, it appears that we can tailor the effect by altering the EC deposition location. As is shown in Fig. 11, this change in density profile alters the radial profiles of the high Z impurities, which go from moderately peaked to essentially flat. Central \(Z_{\text{eff}} \) is reduced by a factor of 1.3 owing to a factor of two reduction in high Z impurities, nickel and copper. The hollow carbon density profile also flattens somewhat in the plasma core.

4. Improved Operating Scenario for ITER

A key figure of merit in the design of burning plasmas devices is the fusion gain, given by fusion power divided by heating power. The fusion gain of a burning plasma system can be related approximately to
\(\beta_T \tau_E \) which is proportional to \(\beta_N H_89/q_{95}^2 \). As is shown in Fig. 12, we have demonstrated \(\beta_N H_{89} = 6.5, \beta_N H_{89}/q_{95}^2 = 0.4 \) and \(q_{95} = 4.2 \) for up to 6.5 s (36 \(\tau_E \)) with the duration limited by hardware constraints. Other shots show \(\beta_N H_{89} = 7 \) and \(\beta_N H_{89}/q_{95}^2 = 0.4 \) at \(q_{95} = 4.4 \) for about 6.3 s, again limited only by hardware constraints. These cases match the \(\beta_N H_{89}/q_{95}^2 \) value of the ITER design but at a \(q_{95} \) well above the ITER value of 3. The increased normalized performance is due to both higher \(\beta_N \) and \(H_{89} \) than anticipated for low-\(q \) ELMing H-mode. The discharges are stationary on the thermal, resistive and wall equilibration time scales. These discharges utilize feedback controlled density and beta values to achieve a stationary state in which a small (3,2) tearing mode keeps \(q_{\text{min}} \) just above unity, preventing sawteeth and fishbones.

The operational \(\beta_T \) limit in these discharges at present is the onset of (2,1) NTMs. Because the classical mechanisms producing the NTM seed island (i.e. sawteeth and fishbones) are absent in these discharges, they can be operated at much higher \(\beta_N \) than conventional, sawtoothing, ELMing H-modes. Experimentally, these discharges can be operated at the no-wall beta limit [18]. Initial attempts at using RWM feedback in this class of shots have demonstrated some modest increase in rotation, suggesting that the plasmas are slightly above the no-wall limit. Experiments on stabilization of the (2,1) NTM with ECCD in these plasmas are planned for the future.

As is shown in Fig. 13(a), thermal transport in these discharges is much below what one would expect, scaling the single-fluid thermal diffusivity \(\chi_{\text{eff}} \) from \(q_{95} = 3 \) reference cases. Empirical scalings suggest that \(\chi_{\text{eff}} \sim q^{1.4} \) while nondimensional scaling results give \(\chi_{\text{eff}} \sim q^2 \) [50]. Given these scalings, the near equality of the \(\chi_{\text{eff}} \) values for the \(q_{95} = 4.5 \) and \(q_{95} = 3.0 \) discharges shown in Fig. 13(a) is quite surprising. Predictive transport calculations utilizing the GLF23 code [51-53] shown in Fig. 13(b) demonstrate that the predicted \(T_e \) and \(T_i \) profiles agree well with the experimental results in the plasma core. The GLF23 results indicate that the reduction in transport is due to a combination of \(T_i/T_e > 1 \) and sufficient ExB shear, both acting to reduce turbulent transport. These results also indicate that turbulence is not completely suppressed, which is consistent with the ion thermal diffusivity \(\chi_i \) being significantly larger than the neoclassical value. These GLF23 results are one example of our broader effort to develop a predictive understanding of transport [53].
The results in Fig. 12 have been achieved at relatively low density in discharges with $T_i/T_e > 1$. Because these conditions are a concern for extrapolation to burning plasmas, experiments have been conducted exploring higher density operation in the range from $n_e/n_{GW} = 0.3$ to 0.5. Here, n_{GW} is the Greenwald density [54]. Over this range, confinement quality decreases only slightly while ion collisionality ν_i, effective charge Z_{eff}, and T_i/T_e move much closer to the ITER design values. The trends indicate that by increasing the density to $n_e/n_{GW} = 0.7$, ν_i and T_i/T_e values consistent with the ITER values should be achieved [18].

5. General Tokamak Improvements

5.1. Quiescent H-mode

The pulsed heat and particle loads to the divertor caused by Type I ELMs pose significant design issues for divertor components in future burning plasma devices. Because of its improved energy confinement, there is general agreement that H-mode plasmas will be used in these devices. Accordingly, the world fusion community is seeking solutions to the Type I ELM heat load problem. One solution discovered on DIII-D is the quiescent H-mode, which has the H-mode edge transport barrier but does not exhibit ELMs [17,19,20]. An example of a fairly long pulse QH-mode plasma is shown in Fig. 14. In this case, the quiescent phase lasts about 3.8 s or about $25 \tau_E$. In standard ELM-free H-mode, particle confinement time is so good that the density rises monotonically until either an ELM occurs or the plasma suffers radiative collapse. As can be seen, QH-mode can be run with basically constant density and radiated power, owing to the presence of an edge electromagnetic mode, called the edge harmonic oscillation (EHO), which increases the edge particle transport [19,20]. When the EHO starts from a standard ELM-free phase, there is a clear correlation between decreased plasma density and increased divertor D_{α}, indicating deuterons have left the main discharge and gone into the divertor [20]. Measurements of the heat load to the divertor show that the heat load profiles are broader than those for standard ELMing H-mode [17].

At present, QH-mode has been seen over a reasonable parameter space [19,20] but has always been done with neutral beam injection counter to the plasma current. QH-mode has been seen with input powers as low as 3 MW; maximum input power used to date is 13.5 MW. We have seen quiescent H-modes over entire range of triangularity ($0.16 \leq \delta \leq 0.75$) and safety factor q_{95} ($3.4 \leq q_{95} \leq 5.8$) explored to date. Most of our work has been done with plasma current in the range $1.0 \leq I_p$ (MA) ≤ 2.0 and toroidal field in the range $1.8 \leq B_T$ (T) ≤ 2.1. We also have quiescent H-mode examples at $I_p = 0.67$ MA and $B_T = 0.95$ T. Pedestal densities are in the range of 1×10^{19} m$^{-3}$ to 6.5×10^{19} m$^{-3}$. Although the EHO has been seen in co-injected discharges, the quiescent H-mode has not. Future experiments are planned to expand the parameter space further.
5.2. Disruption mitigation

Experiments on DIII-D have demonstrated that the impact of disruptions on first wall or in-vessel components can be greatly reduced by the injection of noble gas using a high pressure gas jet [21-23]. Modeling indicates this technique extrapolates well to future burning plasmas experiments. Recent experiments on DIII-D have shown that this technique will mitigate three major disruption effects in future devices: divertor surface melting/ablation by plasma heating, mechanical stress from halo currents and the production of relativistic, runaway electrons.

The basis of this technique is the injection of a noble gas (neon or argon) into the plasma as is shown in Fig. 15. The gas jet is found to penetrate to the central plasma at the gas sound speed (300 to 500 m/s) owing to its high density (>10^{24} \text{ m}^{-3}) and high pressure (>20 kPa). The jet increases the atom/ion content of the plasma by a factor of 50 in several milliseconds. As a result, the plasma energy is dissipated uniformly on the vessel wall by UV radiation from the injected impurity. The conducted heat flux to the divertor is 2% to 3% of the plasma kinetic energy, compared to 20% to 40% for non-mitigated disruptions. The plasma remains well centered in the vessel while the current decays rapidly in the cold, resistive plasma. Runaway electrons are well controlled by the gas jet injection, in contrast to mitigation attempts with cryogenic argon pellets. The large neutral density of the gas jet effectively suppresses the runaways.

The type of disruption which can potentially do the most damage is the so-called vertical disruption event (VDE) in which plasma position control is lost and the plasma moves rapidly towards the divertor X-point. These can induce substantial, poloidally and toroidally asymmetric halo currents in the vacuum vessel. DIII-D has demonstrated real time detection and mitigation of VDEs using the plasma control system. In these experiments, vertical position control was deliberately disabled at a chosen time during the discharge. Using an independent detection system to determine the vertical shift, the PCS triggered the high pressure gas jet when the vertical position had moved by a preset amount between 2 and 10 cm. Compared to a VDE with no mitigation, the toroidal peaking factor for the halo current was reduced from 2 to 1.1 while the magnitude of the peak poloidal halo current was cut in half.

Based on physical models benchmarked against the DIII-D experimental data, it appears that this technique extrapolates favorably to future burning plasma experiments. Along with techniques to operate the discharge away from disruptive limits, gas jet mitigation should substantially improve design flexibility and operational reliability of next-step tokamaks.

5.3. Balanced double-null discharges

Both MHD stability considerations and operational experience suggest that high triangularity double-null discharges have significant performance advantages. For example, the discharge in Fig. 1 has this shape. Plasmas with this shape are not usually considered for burning plasma experiments because of the engineering difficulties related to 1) the magnetic field
coil set needed to make this shape and 2) the difficulty in designing the divertors with their inner legs up against the center post. For the divertor, some designers have assumed that the heat and particle flux to the inner strike points for a balanced double-null plasma would be similar to those seen at the inner strike point in single-null divertor discharges; it would be difficult to find space on the centerpost for components to handle these loads. However, as is shown in Fig. 16, the particle flux to both inner strike points is quite low for the balanced configuration. The particle flux at the inner strike point is about 0.2 times that at the outer strike point while the heat flux at the inner strike point is 0.05 to 0.15 times that at the outer strike point [24,25]. These low heat and particle fluxes should substantially ease the design of the inner leg divertor components for double null discharges. These results are also consistent with measurements over the past decade which suggest that the ELM heat and particle fluxes originate primarily at the outer midplane of the plasma [55].

6. Conclusion

We have made significant progress in developing the building blocks needed for AT operation: 1) We have substantially increased the MHD stable tokamak operating space through rotational stabilization of the resistive wall mode. (2) Using rotational stabilization of

![Fig. 15. Time history of plasma parameters across a disruption mitigated by neon gas injection. (a) Plasma current and central soft x-ray emission, (b) central electron temperature, (c) midplane line averaged density and (d) radiated power from the core plasma. Plasma shape at various times is shown within the vacuum vessel outline at top of figure. Overlaid in red in (b,c,d) are the results of the physics model of the disruption, showing excellent agreement. Note that, since the dense gas quenches fast electrons, the plasma current falls monotonically without the long plateau characteristic of runaways.](image)

![Fig. 16. Ion saturation current to Langmuir probes at the inner divertor strike points at the top and bottom of the plasma for a sequence of conditions where the plasma is changed from upper single null through balanced double null to lower single-null conditions. Note that for the balanced condition, the ion saturation current is small on both inner strike points simultaneously.](image)
the RWM, we have achieved $\beta_N H_{99} > 10$ for $4 \tau_E$ limited by the neoclassical tearing mode. (3) Using real-time feedback of the ECCD location, we have stabilized the (3,2) neoclassical tearing mode and then increased β_T by 60%. (4) We have produced ECCD stabilization of the (2,1) neoclassical tearing mode in initial experiments. (5) We have made the first integrated AT demonstration discharges with current profile control using ECCD. (6) ECCD and ECH have been used to control the pressure profile in high performance plasmas. (7) We have demonstrated stationary tokamak operation for $6.5 \, \text{s} (36 \, \tau_E)$ at the same fusion gain parameter of $\beta_N H_{99} / q_{95}^{2} \cong 0.4$ as ITER but at much higher $q_{95} \approx 4.2$.

We have developed general improvements applicable to conventional and advanced tokamak operating modes: (1) We have an existence proof of a mode of tokamak operation, quiescent H-mode, which has no pulsed, ELM heat load to the divertor and which can run for long periods of time ($3.8 \, \text{s}$ or $25 \, \tau_E$) with constant density and constant radiated power. (2) We have demonstrated real-time disruption detection and mitigation for vertical disruption events using high pressure gas jet injection of noble gasses. (3) We have found that the heat and particle fluxes to the inner strike points of balanced, double-null divertors are much smaller than to the outer strike points.

Acknowledgment

This work was supported in part by the US Department of Energy under Contract No. DE-AC03-99ER54463.

References

THE DIII–D TEAM

1 Lawrence Livermore National Laboratory.
2 General Atomics
3 University of Texas at Austin
4 Oak Ridge National Laboratory
5 Sandia National Laboratories
6 Columbia University
7 University of California, San Diego
8 EUROTECH, Inc.
9 Chalmers University
10 Oak Ridge Institute of Science Education
11 UKAEA Fusion Culham Science Center
12 Troitsk Institute of Innovative & Thermonuclear Investigations
13 University of Wisconsin, Madison
14 Colorado School of Mines
15 Princeton Plasma Physics Laboratory
16 Communications and Power Industries
17 University of Maryland
18 University of California, Los Angeles
19 Palomar Community College
20 Tomlab Optimization Inc.
21 Keldysh Institute
22 Los Alamos National Laboratory
23 Max Planck Institut fur Plasmaphysik
24 Consorzio RFX
25 CompX
26 University of California, Irvine
27 Hampton University
28 Tsukuba University
29 Lehigh University
30 Korea Basic Science Institute
31 Dong Hua University
32 Georgia Institute of Technology
33 Massachusetts Institute of Technology
34 Japan Atomic Energy Research Institute
35 Kurchatov Institute
36 Moscow State University
37 University of Toronto
38 Academia Sinica Institute of Plasma Physics