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Abstract. The stability of axisymmetric plasmas confined by closed poloidal magnetic field lines is
considered. The results are relevant to plasmas in the dipolar fields of stars and planets, as well as the
Levitated Dipole Experiment, multipoles, Z pinches and field reversed configurations. The ideal MHD
energy principle is employed to study the stability of pressure driven shear Alfvén modes. A point dipole
is considered in detail to demonstrate that equilibria exist which are MHD stable for arbitrary beta.
Effects of sound waves and plasma resistivity are investigated for Z pinch and point dipole equilibria
by means of resistive MHD theory. Kinetic theory is used to study drift frequency modes and their
interaction with MHD modes near the ideal stability boundary for different collisionality regimes. Effects
of collisional dissipation on drift mode stability are explicitly evaluated and applied to a Z pinch. The
role of finite Larmor radius effects and drift reversed particles in modifying ideal stability thresholds is
examined.

1. Introduction

Stability of axisymmetric plasmas confined by closed line poloidal magnetic fields is in-
vestigated. The results are relevant to both natural systems, such as plasmas confined
by dipolar fields of stars and planets, and laboratory experiments, such as the Levitated
Dipole Experiment (LDX) [1], multipoles, Z pinches and field reversed configurations. In
such systems, plasma and magnetic field compression due to closed field lines or large
trapped particle populations counteracts unfavorable magnetic field line curvature, pro-
viding favorable stability properties.

2. Ideal MHD Stability

When ideal MHD theory is employed to study isotropic pressure plasmas, the energy
principle can be used to derive an interchange stability condition, d < γ, and an integro-
differential ballooning equation,
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for pressure driven shear Alfvén modes in the most unstable limit of large toroidal mode
numbers, n � 1. Here d ≡ −d ln p/d ln
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)
, γ = 5/3, R is the cylindrical radial

coordinate, κ is the magnetic curvature, ρ is plasma density, ξψ describes the radial
plasma displacement, and 〈· · ·〉θ and d� indicate an average and the incremental length
along the field line. The results are applied to a point dipole equilibrium [2] to show that
it is stable for arbitrary β ≡ 8πp/B2.
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3. Resistive MHD Stability

The ideal MHD treatment can be generalized to include sound waves and effects of plasma
resistivity. For n � 1 the system of linearized resistive MHD equations reduces [3] to
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where W ≡ 4πγp (∇ · ξ), η‖ (η⊥) is parallel (perpendicular) resistivity, and c is the
speed of light. In the limit ω → 0 Eqs. (2) reduce to Eq. (1). Concentrating on up-
down symmetric systems we find from Eqs. (2) that two types of resistive instabilities
are possible: ‘strong’ and ‘weak’ ones. The ‘strong’ instabilities are purely growing modes
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is a positive number [3], with ξψ0 a solution of Eq. (1) with inertia and plasma plus
magnetic field compression terms set to zero. These instabilities only exist at the ideal
stability boundary for up-down anti-symmetric (odd) modes and do not rely on a radial
localization, unlike resistive modes in sheared magnetic fields. The quantity F → ∞
for a circular Z pinch, so the ‘strong’ instability is of no concern there. The ‘weak’
instabilities have real frequencies associated with ideally stable sound or shear Alfvén
modes, and growth rates proportional to n2η‖,⊥, which are n2 � 1 times larger that the
inverse equilibrium resistive evolution time scale. Such instabilities can exist away from
odd mode ideal stability boundaries. In a circular Z pinch, the ‘weak’ instabilities are of
no concern as well since they are more stable than the ideal interchange mode. In the
point dipole [2], where the lowest ideal odd mode is always stable so that the ‘strong’
resistive instability is not allowed, this lowest ideal odd mode is destabilized by η‖ and
acquires a growth rate proportional to n2η‖, unless η‖ 
 η⊥.

4. Kinetic Stability

MHD fails to describe many important phenomena, such as drift frequency modes, and
assumes collisional orderings which are often not relevant. In particular, for the antici-
pated typical LDX plasmas with densities N ∼ 5× (1012 − 1013) cm−3 and temperatures
Te ∼ Ti ∼ (100− 200) eV electrons are ‘semi-collisional’, ωbe > νe > ωde, ω∗e, while ions
can be anything between ‘semi-collisional’ and collisionless. Here, ωb, ν, ωd and ω∗ are
bounce, collision, magnetic and diamagnetic drift frequencies, respectively. Accordingly,
a kinetic theory has been employed to study the stability of plasmas with i) both ‘semi-
collisional’ electrons and ions, ii) both collisionless electrons and ions, and finally iii)
‘semi-collisional’ electrons and collisionless ions.

To study the stability of ‘semi-collisional’ plasmas i) at arbitrary β the full linearized
gyro-kinetic equation is solved perturbatively [4]. The leading order correction to the
distribution function is found to be a modified stationary Maxwellian, which, upon sub-
stitution into quasineutrality condition and Ampere’s law, leads to a ballooning equation,
which is equivalent to Eq. (1), but with γ → Γ = Γ (ω, ωdi, ω∗i). For ω � ωdi, ω∗i, Eq. (1)
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is recovered, since Γ→ 5/3, while for ω ∼ ωdi, ω∗i the dispersion relation for the so-called
entropy mode [5] is obtained,(
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where η ≡ d lnTi/d lnN and Te = Ti is assumed. The stability of this mode depends
on both d and η, as shown in FIG. 1. When stable, the entropy mode is represented
by two waves propagating in the ion and the electron diamagnetic drift directions, re-
spectively, with the electrons and ions oscillating radially and the total plasma pressure
being unperturbed. When unstable, convective instability tries to relax the ‘unfavorable’
temperature and density gradients. The entropy mode is electrostatic and flute-like at
arbitrary β. As the shear Alfvén mode becomes flute-like in the vicinity of its marginal
stability boundary, d = 5/3, it is not surprising that the two modes couple at such d.
Ion collisional effects, in particular ‘gyro-relaxation effects’, corresponding to collisional
thermal redistribution among the different degrees of freedom and described by the ion
viscosity, play an important role in the stability of the entropy mode and have been found
to be capable of destabilizing it (FIG. 1).
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FIG. 1. Regions of stability (white) and
instability in the absence (black) and due
to (gray) gyro-relaxation effects for the
entropy mode for a Z pinch equilibrium.
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FIG. 2. Stability boundaries for the en-
tropy mode for the collisionality regimes
i) (dashed), ii) (dotted) and iii) (solid).

The cases ii) of collisionless plasma and iii) of ‘semi-collisional’ electrons and collisionless
ions have been studied in a similar way [6] in the limit of small β. The analogs of the
shear Alfvén and the entropy modes are found, with the former being stable (unstable)
when d < 5/3 (d > 5/3) while the stability of the latter depending on d and η with the
most favorable for stability value of η being 2/3. It is found that the instability regions
of the drift-frequency mode in d − η space become larger as the collisionality decreases,
being the largest for the collisionless case (FIG. 2).

5. FLR Stabilization of High-β Collisionless Plasma

The case (ii) of collisionless plasma has also been studied for β � 1 in Ref. [7] in an
attempt to examine the stability of the Earth’s magnetospheric magnetic flux surfaces
and to suggest pressure-driven plasma instabilities as a possible trigger for magnetic
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substorms. A quadratic form of eigenmode equations for electromagnetic perturbations
derived from a collisionless drift kinetic equation is used. Sufficient conditions for the
collisionless Alfvén and entropy mode stability are formulated in terms of η and a d-like
quantity depending on the ion pitch angle variable, the former condition being identical to
the usual MHD stability condition, d < 5/3. The local stability of a model dipolar plasma
equilibrium has been investigated to find that, unlike the point dipole equilibrium [2], it
is MHD unstable above some critical β and that the most favorable value of η for the
entropy mode stability is 2/3, as in Ref. [6]. It is of interest to note that the Earth’s
high-pressure trapped geotail plasma satisfies MHD ballooning stability condition except
during magnetic substorms [8].

At the outer flux surfaces of finite volume magnetic dipole configurations where the
pressure may be forced to decrease over a scale length, Lp, shorter than the field line cur-
vature, the criterion for compressional stabilization, d < 5/3, is violated and collisionless
MHD instabilities are likely to occur. Here we address whether it is possible to reduce
their growth rates by finite ion Larmor radius (rL) effects. To explore this possibility,
the stability of the outer boundary of a hard-core cylindrically symmetric kinetic Z-pinch
equilibrium is investigated. The integral eigenmode equation for arbitrary rL is derived
and solved numerically for flute perturbations. Ignoring compressional stabilizing terms
of order κ2 = R−2, assuming ∂/∂R > kz, and considering the small rL limit, the integral
equation reduces to a differential equation (see also Ref. [9])(
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FIG. 3. Growth rates for hard-core Z-
pinch equilibrium with conducting wall at
plasma boundary: from integral equation
(solid curve); from differential equation
(dots).

We find from solutions of both the integral
and differential equations that a critical re-
quirement for FLR to be effective in reducing
MHD growth rates is to have a conducting
wall at the plasma boundary, which constrains
the boundary perturbation to be zero, ξψ = 0.
If the density is finite at the plasma boundary,
T is finite and the differential equation is non-
singular at the plasma boundary. Then, when
the pressure gradient is finite, FLR effects re-
duce MHD growth rates if r2

L ∼ κL3
p (FIG. 3).

The solutions of the integral eigenmode equa-
tion are also shown in FIG. 3 and they are
similar to those of the differential eigenmode
equation. However, in practice a vacuum gap
and a scrape-off region is present. With a vac-
uum gap, and when the plasma frequency ex-

ceeds the cyclotron frequency (ωpi/Ωi � 1) within the unstable boundary layer, the
boundary condition effectively changes to ∂ξψ/∂R → 0. We then find that FLR stabi-
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lization is not effective if the conducting wall is at a distance larger than a small fraction
of a Larmor radius from the plasma edge (this result applies to both the integral and
differential equations).

At high plasma beta, β > κLp, particle drifts are reversed. If magnetic field gradient
drifts are larger than typical MHD growth rates, the magnetic compression dominates
the plasma perturbation. The compressional plasma response is now more complicated,
but the plasma boundary conditions affect the solutions of the eigenmode equations in
a manner similar to that described above. The compressional response is proportional
to the pressure gradient, and it can be stabilizing if the curvature drift frequency is also
larger than typical MHD growth rates. This requirement is not easy to satisfy although
it may be achievable if characteristic MHD growth rates can be reduced (for example) by
having a two component plasma in which a small population of ‘hot’ particles support
the pressure gradient while the principal ‘background’ component provides a large plasma
inertia.

6. Conclusions

Ideal MHD is used to demonstrate that axisymmetric closed field line equilibria exist
which are stable for arbitrary β. Resistive MHD is employed next to show that two
types of resistive instabilities are possible in such systems and to evaluate their growth
rates. Kinetic theory is used to study drift frequency modes and their interaction with
MHD modes for different collisionality regimes. It is found that the instability regions
of the drift-frequency modes in d− η space increase as the collisionality decreases. FLR
stabilization of collisionless MHD edge-modes is investigated at β ∼ 1. FLR effects can
reduce MHD growth rates only if a conducting wall is placed almost exactly at the plasma
boundary. With a vacuum gap and ωpi/Ωi � 1 (the typical case), it is quite difficult to
obtain FLR stabilization, an issue that needs further study.
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