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Abstract. The maximum-J (J is the second adiabatic invariant) capability, i.e., the drift reversal capability, is 
examined in quasi-axisymmetric (QAS) stellarators and quasi-poloidally symmetric (QPS) stellarators as a 
possible mechanism for turbulent transport suppression. Due to the existence of non-axisymmetry of the 
magnetic field strength in QAS configurations, a local maximum of J is created to cause the drift reversal. The 
increase of magnetic shear in finite beta equilibria also has favorable effect in realizing the drift reversal. The 
radial variation of the uniform magnetic field component plays a crucial role for the drift reversal in a QPS 
configuration. Thus, the drift reversal capability and its external controllability are demonstrated for QAS and 
QPS stellarators, by which the impact of magnetic configuration on turbulent transport can be studied in 
experiments.     

  
1. Introduction 
 

Improved plasma confinement has been realized in toroidal plasmas by the turbulent 
fluctuation suppression. This has been considered to be consistent with theoretical predictions 
for the stabilization of micro-instabilities [1]. Several kinds of micro-instabilities appear when 
the directions of the diamagnetic drift and the ∇B drift (B is the magnetic field strength) are 
the same for trapped particles. The direction of ∇B drift precession can be expressed in terms 
of the radial derivative of the second adiabatic invariant J. The stability condition for them 
is derived as ∇P•∇J > 0 (∇J<0 for ∇P<0) in terms of J and scalar plasma pressure P, which is 
called the maximum-J criterion (drift reversal). This condition is realized by q (safety factor) 
profile control (such as in reversed shear tokamaks) [1], control of the plasma cross-section 
(such as ellipticity) [2], plasma diamagnetism [3], and strong inhomogeneity of the radial 
electric field [4]. The experimental demonstration of a significant increase of confinement 
time in a spherator [5] when trapped particles are localized in a good curvature region is also 
considered as a remarkable example of this effect.  

 
Innovative helical systems have been widely studied [6-10] based on the quasi-symmetry 

concept. It is worthwhile to examine the drift reversal capability in such configurations for 
significant guidance in the configuration design for possible turbulent suppression. Here, we 
note that the importance of a drift reversal capability for the design of helical systems was 
already pointed about one decade ago [11]. Its qualitative evaluations are now available as 
described in this paper.   
 
2.  Description of J-calculation 
 

The second adiabatic invariant J for trapped particles is defined as J≡∫v||dl, where dl 
denotes the line element along a magnetic field line and the integral is performed over a 
bounce period. For analytical simplicity, J*≡∫v||dζ, (ζ being the toroidal angle) has been 
frequently utilized, which is based on the assumption that the rotational transform per toroidal 
field period is sufficiently small that the integral path can be taken in the toroidal direction. 
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However, in this study, a direct calculation of J is performed by following the guiding center 
of low energy trapped particles for which the deviation from a magnetic field line is 
negligibly small. The guiding center equations [12] are expressed by use of the Boozer 
coordinates (ψ, θ, ζ) [13], with ψ being the normalized toroidal flux, and θ (ζ) the poloidal 
(toroidal) angle. The motion of the guiding center is defined by five variables ((ψ, θ, ζ) for 
the real space, velocity and the particle energy, W). Since the direction (sign) of the precession 
is the key for the stability condition, the W dependence is not important here, so that particles 
with fixed W(=10eV) are considered. Also, the integral is performed along the particle 
trajectory so that one out of the θ and ζ dependences is omitted when the launching points of 
particles are specified. To obtain the radial profile of J, tracer particles which are to be 
reflected at the same B are launched from the bottom of the dominant magnetic field ripple 
[e.g., the bottom of the toroidicity induced ripple (θ=0) for QAS configurations, and that of 
the bumpy (poloidally symmetric) field-induced ripple (ζ/(2π/M)≡ζN=0.5) for QPS 
configurations]. Here, M is the number of field periods. The initial velocity of tracer particles, 
v||,st, is defined as v||,st=[2W(1-Bst/Bref)/m]1/2, where Bst (Bref) is the magnetic field strength at 
the initial (bounce) point and m is the particle mass. It is noted that the specification of Bref 
corresponds to treating tracer particles with the same magnetic moment (µ), which is an 
estimate of how deeply these particles are trapped in a magnetic ripple.  
 
3.1. Drift reversal capability in QAS configurations  
 

Configuration studies based on the QAS concept have been extensively developed in Japan 
(CHS-qa) [8] and in the USA (NCSX) [9]. In this section, the drift reversal capabilities in 
candidate configurations for both designs are described.   

 
Firstly, the candidate configuration for CHS-qa (2w39) is examined. This particular 

configuration (M=2) has an aspect ratio of about 4.3, and the rotational transform lies between 
0.37 and 0.4 with a slight increase towards the edge. Several non-axisymmetric components 
of B appear near the edge with a few percent of the uniform magnetic field strength.   

 
Figure 1 shows contours of J with Bref=1.0 in the (r/a, ζN) plane, with r/a=ψ1/2, for a 

vacuum configuration. It shows the existence of a local maximum of J, which gives dJ/dr<0 
(drift reversal) in the outer radii (hatched region). The local maximum of J is created by the 
residual non-axisymmetry of B in the edge region due to the larger reduction of the parallel 
velocity through the conservation of µ [14]. This feature is significantly unique for QAS 
configurations, and is not realized in axisymmetric tokamaks. The non-axisymmetry of B can 
be externally controlled through configuration control, such as by shifting the magnetic axis 
inward/outward. In addition, large positive shear of the rotational transform (negative shear of 
q) can be realized with the sustenance of the rotational transform through the bootstrap 
current (in a region of large pressure gradient) and reduction of the central rotational 

FIG .1.  Contours of J (Bref=1.0) on (r/a, ζN) 
plane for the candidate configuration of 
CHS-qa (2w39). The “Max” denotes the local 
maximum of J and the hatched region 
indicates the region where drift reversal is 
realized.    
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FIG .2.  The rotational transform for the li383 
configuration at β=4.1%.  

transform by the Shafranov shift [15]. In such a case, tokamak-like drift reversal (due to the 
magnetic shear) is also possible in the core region, combined with the non-axisymmetry 
induced drift reversal in the edge region.   

 
Secondly, a previous candidate configuration for NCSX (li383) is examined. This 

configuration has been obtained by a numerical optimization study, with a target β value of 
about 4.1 % with M=3 (with a plasma current of about 125 kA for B=1.2T and a major radius 
of 1.4 m). Thus, the drift reversal capability is examined at this particular β value. The 
rotational transform profile is shown in Fig. 2, where relatively large positive shear of the 
rotational transform (negative shear of q) exists, except very near the edge region. It also has a 
large radial variation of the uniform magnetic field component (corresponding to a deep 
magnetic well), which weakens the contribution of the non-axisymmetry of B to the particle 
trajectories.  
 

 

 
Figure 3 shows contours of J with (a) Bref=0.98 and (b) Bref=1.02 in the (r/a, ζN) plane. For 
more deeply trapped particles (such as for the Bref=0.98 case), the magnetic shear is not 
enough to realize drift reversal for the inner region. However, as Bref is increased (that is, as 
the degree of trapping becomes shallower), the region where drift reversal is possible 
extends towards the core region. It is recognized from Fig. 4 that the negative shear of the 
rotational transform (positive shear of q) in the very edge region avoids realizing drift 
reversal. In this sense, it can be remarked that the drift reversal capability of this 
configuration strongly depends on the magnetic shear, which is the same mechanism as that 
in reversed shear tokamaks.  

ζN ζN 

r/a r/a 

Max 

Max 

Min Min 

Min 

FIG .3.  Contours of J ((a) Bref=0.98 and (b) Bref=1.02) in the (r/a, ζN) plane for the li383 
configuration with β=4.1%. The “Max (Min)” denotes the local maximum (minimum) of J and 
the hatched region indicates the region where drift reversal is realized.    
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The effects of non-axisymmetry of B, magnetic shear (mainly induced by the plasma 
current) on the drift reversal capability in CHS-qa and NCSX have been described in this 
section. They provide the “external knob” for the drift reversal capability in QAS 
configurations.  
 
3.2. Drift reversal capability in a QPS configuration 
 

As for the QPS category, an example configuration (M=4) [16] is investigated. The 
geometrical aspect ratio is about 10. This configuration has been obtained through plasma 
boundary shaping. There is a significant variation of area of magnetic surfaces in the toroidal 
direction. This gives the dominant bumpy component of B through the conservation of 
toroidal magnetic flux. The bumpy field strength is as much as half of the uniform magnetic 
field strength. There still remain the symmetry breaking components such as those 
corresponding to the helicity and toroidicity. However, the amplitudes of these components 
are less than 1/5 of that of bumpy component, and also it should be noted that the toroidicity 
is reduced to a level about half of the geometrical inverse aspect ratio.  

 

Figure 4 shows contours of J (for Bref=0.65, deeply trapped particles) in the (r/a, θ) plane 
for a finite beta equilibrium (volume averaged β value of about 5 %). J is a maximum at the 
plasma core and radially decreases, which satisfies the condition ∇J<0. It shows clear drift 
reversal. It is noted that drift reversal is not realized at vacuum for this particular 
configuration. It has a large bumpy field component with little radial variation of amplitude. 
At vacuum case, particles launched from ζN=0.5 with constant µ perform similar bounce 
motion, which gives little radial variation of J profile, since the bumpy field component has 
little radial variation (cf., Ref. [16]). This is still true even for a finite beta equilibrium. The 
vacuum magnetic well is much smaller compared to the amplitude of the dominant bumpy 
component. However, the magnetic well is enhanced up to about half of the bumpy 
component for the mentioned finite beta equilibrium, which establishes an absolute minimum 
of B for the core region in the plane where particles are launched. This radial increase of B 
towards the plasma edge plays an essential role for realizing a radially decreasing J profile 
(drift reversal) as shown in Fig. 4. This is the unique mechanism for drift reversal in QPS 
configurations, which is different from that in QAS configurations. This would also be 
relevant for QPS configurations in the design phase at Oak Ridge National Laboratory [10], 
which are to be examined from the viewpoint of the drift reversal capability.   
 
 

FIG. 4.  Contours of J (Bref=0.65) in the (r/a, θ) 
plane for a QPS finite beta configuration. The 
“Max” denotes the maximum of J and the hatched 
region indicates the region where the drift reversal 
is realized.     Max 
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4. Conclusions 
 
In conclusion, the drift reversal capability has been analyzed in innovative helical 

systems to investigate a possible approach towards improved confinement through turbulent 
transport suppression. The unique external knobs for drift reversal, the residual 
non-axisymmetry of B for QAS and the magnetic well for QPS, are clarified in addition to the 
well-known magnetic shear contribution in axisymmetric tokamaks. The external 
controllability of the drift reversal capability is important in performing a systematic study of 
the impact of magnetic configuration on turbulent transport. These knobs provide additional 
approaches towards improved confinement in addition to those (e.g., heating power beyond 
some threshold value) utilized in previous experiments.  

The favorable effect of drift reversal is anticipated to reduce the average bad curvature, 
so as to reduce the growth rate of instabilities such as trapped particle modes and temperature 
gradient modes. The relevance of the drift reversal capabilities is currently being examined 
through quantitative analysis of micro-instabilities by the FULL code [17]. So far, we have 
found the toroidal drift mode (trapped electron mode) in the collisionless electrostatic limit 
for the case shown in Fig. 1. The destabilization is dominated by the most deeply trapped 
particles for which drift reversal is the most difficult to realize due to the non-axisymmetry of 
B. More extensive and systematic estimate of microinstabilities in QAS and QPS 
configurations are to be performed to clarify the contribution of drift reversal in helical 
systems.  
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