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Abstract. The Dynamic Ergodic Divertor (DED), a new concept of the ergodic divertor, is
presently installed for the TEXTOR tokamak. Beside the conventional ergodic divertor operation the
DED also permits the operation with a rotating magnetic field which allows, in particular, to broaden
the heat deposition pattern on the divertor plates. Since its first proposal of the DED in 1996 the
structure of magnetic field, especially, the onset of ergodic zone of field lines and related transport in
the DED operation has been extensively studied using different theoretical and numerical methods.
New methods to study the magnetic field, in particular, the field line mapping have been developed.
The presentation gives the overview of the studies on the structure of magnetic field in the DED, the
formation of the ergodic and laminar zones of field lines at the plasma edge. It also includes studies on
the modelling efforts of the transport of heat and particles in the ergodic and laminar zones.

1.Introduction

The concept of the Ergodic Divertor has been introduced for the control of the plasma
edge by creating ergodic magnetic field lines there using the external coils. The TEXTOR
tokamak is presently open for the installation of the Dynamic Ergodic Divertor (DED), a new
tool for the control of the plasma edge. Beside the conventional concept of the ergodic divertor
implemented in the tokamaks TEXT and Tore-Supra the DED also permits the operation with
a rotating magnetic field which allows, in particular, to broaden the heat deposition pattern on
the divertor plates. Since the first proposal of the DED in 1996 the structure of magnetic field,
especially, the onset of ergodic zone of field lines and related transport in the DED operation
has been extensively studied using different theoretical and numerical methods [1-11]. New
mapping method to integrate Hamiltonian systems, in particular, the field line mapping have
been also developed to study the chaotic magnetic field lines. Below we present the main
results of these studies.

2. Magnetic field structure

The DED coils and spectrum of magnetic perturbations. The set of the DED coils which
creates the external resonant magnetic perturbations at the plasma edge are located inside the
vacuum vessel at the high field side (HFS) of the torus. It consists of 16 individual helical coils
(four quadruples) plus two compensation coils, each winding once around the torus, following
the equilibrium magnetic field of the plasma edge. The current distribution on the coils for
the standard DED operation is I; = I, sin(mj/2+ Qt), where j (j = 1,...,16) stands for a coil
number, I, is a divertor current amplitude (I, < 15 kA), and Q2 is a rotation frequency of the
perturbed field . Such a coil system creates magnetic perturbations given by the one component
of the vector potential localized at the HSF, i.e., A,(r,0,¢) = >, An(r,0) cos(mb —ne — Qt)
with Fourier components
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where B, = 2u,I.n/Ab.r. is a characteristic strength of the magnetic perturbation determined
by the divertor current /., the minor radius of coils r., and the poloidal angular extension of
coil set Af.. Here Ry is a major radius of the torus. The poloidal, m, spectrum of perturbation
A,, is localized near the mode number m, and possesses several major modes at each side of
m.. The perturbed field has the toroidal mode n = 4, and it strongly decays along the radial
coordinate: A, o r"™ (m, = 20).

Hamiltonian field line equations. The Hamiltonian approach is the most natural and
convenient method to study the stochastization of magnetic field lines. The magnetic field line
equations dx/dr = B, where 7 is length along a field line, can be formulated in Hamiltonian
form introducing the a magnetic (Boozer) coordinate system (1,4, ¢): ¢ is an (intrinsic)
poloidal angle, and % is a toroidal flux. In these coordinates the magnetic field has a canonical
form: B = V¢ x Vi+ Vi x VH, where the function H = H (1,9, ) is a Hamiltonian function
of the canonical field line equations

i /dp = OH |0, dip/d = —OH | d9. ()

Field lines of the equilibrium magnetic field are described by the axisymmetric Hamiltonian
H = Hy(¢y) = [dypg (1), where g(¢) is a safety factor. In a magnetic coordinate system
they are straight lines, ¥ = ¢/q(). For any non-axisymmetric magnetic perturbations in
tokamaks the Hamiltonian function can be presented in the form

H = Ho() + €3 Hyn(4) cos(md) = nip = x), (3)

where € is a dimensionless perturbation parameter, determined by the ratio of the characteristic
strength of the perturbed magnetic field, B, to the toroidal magnetic field By, i.e., e = B./B.
The terms eH,,, (1) cos(md —nyp — x) correspond to the resonant magnetic perturbations, and
x = (t is a phase.

Mapping method of integration of the field line equations. To study Hamiltonian field line
equations a new symplectic mapping method has been developed [12,13]. It is much faster
than the standard integration methods of ordinary differential equations, and constructed in
a flux-preserving form. The mapping relates the cross-section points, (9%, 1), of the field line
(9(p), ¥ (p)) with the poloidal section ¢ = @i = (27/ns)k, (k = 0,£1,+2,...) with the ones
(Ok+1,%ks1) at © = @rr1. The integer number s (s > 1) stands for the number of the map
steps per one period 27 /n of the perturbation along the torus. The map has the following
symmetric form
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where Sy = S(9, ¥, @; €)|,—,, is a generating function. In the first order of € it is determined
by

S(ﬁa v, (,0) = _((P - (PO) Z Hm(\Ij) [a(xmn) Sin(mﬁ —ny — X) + b(xmn) C()S('m"‘9 —ny — X)] ) (7)

where 2., = (m/q(¥) —n)(p — ¢o), a(z) = (1 — cosz)/z, and b(z) = sinz/z. The Poincaré
map may be obtained by applying the map (4)-(6) s times.

Spectrum of magnetic perturbations in a toroidal system and the onset of the stochastic
magnetic field lines. The Hamiltonian form of field line equations (2), (3) allows one to study



directly the formation of the ergodic zone using, both the qualitative Chirikov’s criteria and
the symplectic methods of integration. Each of (m,n) - perturbations creates a magnetic island
of the width Aty = 4|leHmn (1) /(dg* /dip)|*/? at the resonant magnetic surfaces ¥ = thy
(¢(¥mn) = m/n). For the certain level of perturbation e the neighboring magnetic islands
start to overlap that leads to the stochastization of field lines and to the formation of the
ergodic zone at the plasma edge. The degree of ergodization can be regulated by the variation
of the plasma current (or magnetic field), the plasma f,, and the divertor current. The
variation of the plasma current I, (or toroidal magnetic field By) shifts the radial positions,
Tmn = Rov/2%mn, of resonant magnetic surfaces shown in Fig. 1 a.
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FIG. 1. a) Radial positions of rmn vs I, (solid curves) at a fized By = 2.25 T and vs
B; (dashed curves) at the fived I,= 0.44 MA; b) Spectrum |Hy,| for different values
of Boot: 1 — 1.0, 2 — 0.6, 3 — 0.2, (I,= 0.5 MA, B, = 1.875 T, I.= 15 kA).

By changing the plasma ), one can vary the spectrum of magnetic perturbations Hy, (7).
The specific features of the relation of H,, (1) with the vacuum magnetic perturbations, A4,,
(1), in a toroidal system have been established. It was found that the transformation matrix,
Smmts 1€, Hp(¥) = Y1 Smm' Amy, does not simply connect the neighboring m’ = m £1
modes, but it has general coherent features [5]. For the perturbation field located on the HFS
it is determined by the Airy function Ai(x):
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where 81 = df/d?9|g—, and B3 = d30/d¥3|9—, are the first and third derivatives of the poloidal
angle with respect to the intrinsic angle 4, respectively, taken on the HFS. Since the derivatives
B1, B3 mainly depend on the plasma 3, it allows one to control the spectrum H,, by simple
varying f,e. Fig. 1 b shows an example of such a variation of H,, at the resonant magnetic
surface 7 = 1, (m = 10).

The DED perturbation field creates the ergodic zone of field lines by overlapping of a
several m : n magnetic islands at the plasma edge near the resonant magnetic surface ¢ = 3.
At the standard operational regime the poloidal numbers m are in the interval: 10 < m < 14 at
the fixed toroidal mode n = 4. The degree of ergodization may vary by changing the positions
of the resonant magnetic surfaces, ry,,, or the plasma parameter, ;5. As seen from Fig. 1
one can increase the ergodization by decreasing 3y, at the fixed 7y,,, or by outward shift r,,,
at the fixed Bpo.

3. Properties of the ergodic and the laminar zones

The stochastization of field lines creates the region of open field lines at the plasma edge
connecting to the wall. This region may be roughly divided into two zones, the ergodic and the
laminar zones (see Figs. 2, 3). The ergodic zone consists of field lines with large connection



lengths (more than six poloidal turns), while the zone of field lines with a few polodial turns
is called a laminar zone. The variation of these zones by changing the plasma parameters, for
example, the plasma current or the toroidal magnetic field, allows one to study the different
regimes of the plasma edge extended from ergodic dominated edge to those similar to normal
helical divertor structures. In Fig. 2 Poincaré sections of two type of the ergodized edge
plasma are displayed for the plasma current: a) — I, = 420 kA, b) — I, = 530 kA. (The
plasma parameters are: the major radius Ry = 175 cm, the plasma radius a = 46.7 cm, the
center of the last magnetic surface R, = 174 cm, the plasma ,, = 1. the divertor plate 4
= 47.7 cm, the divertor current I.= 15 kA, the radial position of coils . = 53.25 cm). Fig.
2a describes the case with the dominated ergodic zone, while Fig. 2b shows the one with the
dominated laminar zone. It is convenient to present the laminar zone by the contour plot of
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FIG. 2. Poincaré sections of magnetic field lines in the (r,9):
(a) I, = 420 kA; (b) I, = 530 KA.

regions (on the (1J,1)- plane) with the different wall to wall connection lengths (in a number
of poloidal turns N,). Such an example is shown in Fig. 3.

The magnetic field lines at the plasma edge may be viewed as chaotic scattering system
whereby field lines enter into the plasma edge from the wall and leave when hitting the wall
after a certain number of toroidal (or poloidal) turns [7]. The length of field lines inside the
plasma region is very sensitive to their initial coordinates: a tiny change of the input conditions
can produce drastic changes in the length of field lines.

4. Transport of heat in the ergodic and lam-

6 inar zones
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4 Several approaches to study the heat and the par-
s ticle transport in the ergodic and the laminar zones
, have been developed. The first of these methods, the
. three—dimensional Monte—Carlo code for the heat bal-
iy \ . ance equation, is based upon the "multiple local mag-
150 10 170 180 30 20 210 netic coordinate system approach” [10]. The main idea

of this method is to solve the geometrical problem with
the help of Lagrangian representation. Indeed, one can
represent any diffusion-like equation as a random-walk
process of the corresponding ”test particles” (e.g., heat
elements in case of temperature equation), and enforce that the motion of these particles
follows the magnetic field. The details of the algorithm are described in Ref.[10].

It has been applied to the TEXTOR-DED with the partially ergodic magnetic field config-
uration. The plasma temperature fields and the profiles of the radial component of heat flux
due to the classical parallel and anomalous perpendicular diffusion have been calculated. The

Fig. 3. Contour plot of the con-
nection lengths in poloidal turns Np.



results for realistic TEXTOR field obtained from DIVA-GOURDON [2] code are presented on
the Fig. 4. For a parallel diffusion coefficient x| classical (Braginskii) expressions are used,
and the anomalous cross-field diffusion coefficient x| is taken as 3 m?/s. One can see the
strong influence of the magnetic field on the temperature profile.
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FIG. 4. a) Poincaré sections of magnetic field lines in the (r,0):
(b) Corresponding temperature profile at the plasma edge.

An approach with a finite element method has been also under development. The idea of
this modeling is that the flux tube of relatively short connection length would play a most
important role in the transport at the edge, because the long connection length flux tubes are
deformed into a very thin structure of order of ion Larmor radius, where the plasma easily
diffuses to neighboring short connection regions.

Based on Fig. 3 the edge region is divided into areas with the flux tubes of one and
two poloidal turns, and they are analyzed using 3D grids [11]. Regions with three and more
poloidal turns are approximated as an ergodic region where simply the effective cross field
transport coefficients are introduced. Because of the configuration of DED perturbation, the
flux tube has a symmetric point at HFS for two-turn region and LFS for one-turn region,
respectively. A SOL like transport is considered for these one and two turn regions, with the
stagnation points at the symmetric planes. The numerical scheme is a splitting method. A
finite element method solves the cross field transport on poloidal planes, and a finite difference
method solves the parallel transport in volume cells between the poloidal cuts. The advantage
of this approach will be the rather simplified picture based on the SOL model.
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