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Abstract. Ferromagnetic and resistive wall effect on beta limit in a tokamak is investigated.
It is shown that the beta limit is reduced to 90% of that without ferromagnetic effect for high
aspect ratio tokamak, if the ferromagnetic wall of relative permeability of 2 is used. The
effect of toroidal plasma flow is also investigated, and the flow velocity of 0.03vta, vta is
toroidal Alfvén velocity, is sufficient for the resistive wall to have stability effect of ideal
wall. Both the resistive wall and ideal kink modes are destabilized by the ferromagnetic wall
effects.

1. Introduction

In order to improve economic and environmental suitability of tokamak fusion reactors, both
the accomplishment of high beta plasmas and the practical use of low activation materials to
reduce the amount of radioactive waste are crucially important [1]. Although low radio-
activation ferritic steel is considered as a most promising candidate for structural material in
DEMO reactors, the influence of a ferromagnetic property in the ferritic steel on MHD
stability and beta limits has been poorly investigated so far [2]. The effect of ferritic steel on
MHD stability can be regarded as an additional factor to deteriorate the stability in a close
relationship with stability for resistive wall mode (RWM) [3]. This paper finds substantial
influences of residual magnetism in passively stabilizing wall on ideal MHD stability, i.e.,
"ferromagnetic wall mode", even though the ferromagnetism is sufficiently saturated at a
high toroidal field (typically, µ/µ0~2) and shows evaluations of deterioration of the beta limit
due to the ferromagnetic property for the first time: where µ and µ0 denote the permeability
of ferromagnetic wall and vacuum, respectively. The toroidal flow effect on ferromagnetic
and resistive wall mode is also investigated.

2. Basic analysis of ferromagnetic wall effect on kink mode

The roles of the ferromagnetic wall on the MHD stability is the twofold; the attraction of the
perturbed magnetic field and the enhancement of the local skin time. The first one
effectively moves the wall far from the plasma, even further than the infinity, and then
widens the unstable regime of safety factor. The second reduces the growth rate and is

Growth rate of n=1 free boundary kink mode 
versus safety factor of uniform current 
cylindrical tokamak with permeability effect. 
The permeability increases the growth rate 
of kink mode, especially for low qa region, 

and the stability window is reduced, amount 
of which is shown by distance between two 
arrows.
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stabilizing. However, the analysis (see Appendix) shows that the enhancement of the local
skin time is canceled out by the magnetic field compression and that the effective skin time
on the MHD stability is expressed by the vacuum permeability; τs =µ0rwd/(2mηw) where ηw
is the wall resistivity, rW and d are the plasma and wall minor radii and the wall thickness, m
is the poloidal mode number. These features were confirmed by the numerical simulation of
the free boundary kink mode in a cylindrical plasma with ferromagnetic and resistive wall
(see FIG.1) and it was shown that, even for the almost saturated state of the permeability, the
ferromagnetic wall has the considerable effect on the MHD stability. The increment of the
unstable q regime for the uniform current is in good agreement with the analytic evaluation
of δ    nqa=(a/rw)2m(µ/µ0-1)md/(2rw).

3. Critical beta analysis with and without ferromagnetism

In the present paper, the stability for ferromagnetic and resistive wall modes are analyzed
using the linear MHD code, AEOLUS-FT, based on the original resistive MHD equations
developed at JAERI. The linearized resistive MHD equations with plasma flow and
permeability effect are shown blow,

Here, subscript 0 denotes the equilibrium quantity, µ̂  (=µ/µ0) is relative permeability and Γ
is specific heat ratio. Applicability and accuracy of this code for fixed boundary problem
were confirmed by a benchmark test with the FAR code developed at ORNL[4]. For free
boundary problem, the "pseudo-vacuum" model [5, 6] is used instead of "real vacuum"
where the vacuum is replaced by highly resistive plasma, in the AEOLUS-FT code. In the
following numerical calculations, the time is normalized to the poloidal Alfvén transit time
τpa=√ρ0R/Bt, where R is major radius and Bt is toroidal magnetic field, and the ferromagnetic
and resistive wall is assumed to surround the plasma uniformly and the distance between the
wall and the plasma is also uniform.

3.1 Resistive wall mode without ferromagnetism

In order to look at MHD stability of the resistive wall mode without ferromagnetism in the
wall, we investigate the plasma surface safety factor dependence on the growth rate for the
plasma with a uniform current profile and parabolic pressure profile, a circular plasma cross
section and a high aspect ratio without ferromagnetism. The AEOLUS-FT code analysis
shows that, by changing the resistivity of the wall from ηw=1 (representing "pseudo-
vacuum") to ηw=10-4 and 10-6, the growth rates of n=1 modes are reduced from the growth
rate for free-boundary kink mode to that of resistive wall mode, where the obtained growth
rate is consistently shown to be of the order of the inverse time constant of resistive wall.
From these calculations, the dependence of the growth rate on nqa, for low beta and high
aspect ratio plasma, is found to be almost the same as cylindrical analysis [7], indicating the
validity of the AEOLUS-FT code calculation. Here used are a circular plasma cross-section
and a high aspect ratio, qa=2.5 and the minor radius of resistive wall of 1.14a and a
resistivity of the wall fixed at ηw=10-4. The poloidal mode numbers are taken into account
from m=1 to m=10. The number of non-uniform grid points in the minor radius direction is
typically 2000.
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3.2 Dependence of critical beta on permeability

Under the above conditions with parabolic current and pressure profiles, the dependence of
the n=1 mode growth rate on the poloidal beta for the plasma is obtained from the
AEOLUS-FT code analysis, where the thickness of the wall is fixed at d=0.07a and the
permeability in the ferromagnetic and resistive wall is changed from µ/µ0=1 to 8. As shown
in FIG.2, the growth rates clearly increase and the critical poloidal beta values are
substantially reduced down to 90% at µ/µ0=2, 78% at µ/µ0=4 in comparison with the critical
beta value at µ/µ0=1. Figure 3 shows the comparison of the mode structures of m=3/n=1
with and without ferromagnetism corresponding to the cases shown in FIG.2. This figure
clearly represents a feature of magnetic field attraction due to ferromagnetism in the wall in
comparison with the resistive wall without ferromagnetism.

3.3 Dependence of critical beta on thickness of ferritic wall

Effects of the thickness of the ferromagnetic and resistive wall on the critical beta can
appear as a competition between stabilizing and destabilizing effects caused by skin time
and ferromagnetism, respectively. When the wall thickness is increased with the inner wall
radius fixed from d=0.07a to 0.11a and 0.14a, the critical beta increases as 1.49, 1.67 and
1.70, respectively, due to increasing the skin time if the permeability effect is not taken into
account (µ/µ0=1). However, with the permeability effect, the critical beta saturates or even
decreases with the thickness of the wall above a threshold value of the thickness since the
destabilizing effect due to ferromagnetism becomes larger. Indeed, for the case of µ/µ0=2,
the critical beta value is increased from 1.34 at d=0.07a to 1.41 at d=0.11a, but is decreased
to 1.39 at d=0.14a.

4. Effect of toroidal plasma flow

The effect of toroidal or poloidal plasma flow has been considered to play an important role
in stabilizing resistive wall mode [8, 9] with the effect of viscous damping [3, 10]. We
investigate the effect of toroidal plasma flow on resistive wall and ideal kink modes using
AEOLUS-FT code, which solves the complex eigen-value problem. We use the same
analytical equilibrium as that in section 3 (large aspect ratio with parabolic profiles for both
plasma current and pressure) with poloidal beta of 1.8. The equilibrium is sufficiently
unstable for b/a=1.43. In these calculations, we use the rigid plasma rotation and change the
position of resistive wall for different flow velocity. The calculated growth rates versus the
position of resistive wall, rw/a, are shown in FIG.4. For no rotation case, the growth rate
shows the monotonous decreasing function of resistive wall position. For high rotation case,
on the other hand, they appears steep decreasing function at large values of rw/a as ideal wall

Fig.2  Growth rate of n=1 free-boundary kink  
           mode of parabolic current high aspect 
           ratio tokamak versus poloidal beta. 
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branch, and appears again at small value region as resistive wall branch. The growth rates of
ideal wall branch tends to that of ideal wall case for sufficient large flow speed, vΦ0=0.03vta
(vta is toroidal Alfvén velocity). The growth rates in the intermit region are expected to be
stabilized, if we incorporate the effect of viscous damping for equilibria of small aspect ratio
tokamak [3,10]. Figure 5 shows the growth rate for vΦ0=0.06vta flow velocity case with the
ferromagnetic effect. Growth rates are more increased for larger values of relative
permeability for all calculation region.

5. Conclusion

In conclusion, the presence of ferromagnetic wall mode is identified as the critical beta is
reduced to 90% of that without ferromagnetism with a wall thickness of 0.07a for µ/µ0=2 at
which the ferritic steel is sufficiently saturated. Even though the skin time in the wall is
increased with the wall thickness, the ferromagnetism can suppress the improvement in the
critical beta or decrease it if the wall thickness becomes larger than a threshold value. The
effect of toroidal plasma flow is also investigated, and the flow velocity of 0.03vta, vta is
toroidal Alfvén velocity, is sufficient for the resistive wall to have stability effect of ideal
wall. Both the resistive wall and ideal kink modes are destabilized by the ferromagnetic wall
effects. These results would have an impact on reactor designs utilizing ferritic steel material
with ferromagnetism. Finally, we note the above roles of ferromagnetic wall, that is, the
attraction of the magnetic perturbation and the resultant reduction of the MHD stability, is
basically independent on the plasma model, like the inclusion of the viscous damping term,
and in this sense, the ferromagnetic wall mode is the generic one. However, the critical beta
value is affected by details of the plasma model and the configuration, and the quantitative
evaluation of it is now under way, including the effect on the feedback control.
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Appendix

In order to understand the basic features concerning the ferromagnetic wall effects on the
MHD stability, we study MHD mode with poloidal number m in a cylindrical plasmas,
under the assumption of long wavelength limit. We locate the ferromagnetic wall with
resistivity ηw, permeability µ and width d, at r=rw and the perfect conductor wall at r=b,
while the plasma boundary at r=a. The perturbed helical magnetic flux ψ  in the vacuum
regions (a<r<rw and rw+d<r<b) and inside the ferromagnetic wall (rw<r<rw+d) are
analytically solved and these are connected with each other by using the boundary
conditions: [ψ]=0 and [ψ’/µ]=0 at both sides of the ferromagnetic wall (r=rw and r=rw+d) ,
where ψ’ is the radial derivative of ψ and [f]=f(x+0)-f(x-0). Then the resultant vacuum
solution takes the following form;

where Im and Km are the 1st and 2nd modified Bessel function of m-th order with argument κrw,

and Im+ and K m+ are those with argument κ(rw+d),

γ is the growth rate of the mode. By connecting ∆∗
a with the solution of ψ in the plasma, the

dispersion relation of the mode is obtained. In the case of the thin ferromagnetic wall, taking
the first order of d/rw, the above equation is expressed by the following simplified form;

where τw = µ0 drw/(2mηw) is the skin time of the ferromagnetic wall. Note that this skin time
is independent on the permeability of the wall, which means the enhancement of the local
skin time τw=µdrw/(2mηw) is compensated by the flux compression through the boundary
condition.  This equation also shows that the ferromagnetic wall makes the mode unstable
even for the high conductivity. The growth rate of the MHD mode can be expressed as,

where

and α=(∆∗
a +1)/(∆∗

a -1) is generally the function of growth rate determined by the plasma
dynamics. For the range where the ideal mode is stable and the plasma inertia is neglected,
the parameter α is independent on γ  (for uniform current case, α= nqa- m + 1). Then the first
term of the right hand side gives the resistive wall mode and the second term shows that the
high permeability enhances the mode growth rate and widens the unstable region.
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