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Abstract.  A theoretical framework is developed to generate tokamak equilibrium configurations for which, on
one hand, the current results entirely from the bootstrap current source driven by the pressure gradient while, on
the other hand, the pressure gradient is determined from the thermal conduction equation with a thermal
diffusivity constructed to have properties observed in confinement experiments: gyroBohm confinement,
gradients only with respect to the poloidal flux, global confinement depending only on plasma current and
independent of toroidal field, a critical temperature gradient,  and an overall confinement improvement with
negative shear. The nondimensional method used yields eigenvalues composed of a collection of physics
quantities, resulting in scaling relations among physics variables. It is found that the the plasma temperature
scales as T∝  P2/3ε-1/3 , while Ip∝  n1/2 P1/3 a ε1/12. The system has a solvability criterion which does not permit
solutions when the confinement improves rapidly with increasing negative shear. A simplified 1-D model
captures the essential physics of the coupling between bootstrap currrent generation and thermal conduction.

1.  Introduction

Our ultimate vision of a tokamak based fusion power system has both a plasma current that
arises almost entirely from bootstrap current because thermonuclear reactions drive no cur-
rent and a reasonable βtor limit (βtor ≥ 0.04). Economic and efficiency arguments restrict any
current arising from external auxiliary power to be small relative to the plasma current. Seed
currents in the immediate vicinity of the magnetic axis may well be possible. Thus, an essen-
tial step in advanced tokamak research is to understand whether a 100% bootstrap fraction
discharge actually exists, what its properties will be, and what seed current is necessary.

Experimentally, there are many discharges that are fully non-inductive [1–7] for which auxil-
iary power sources drive a significant fraction of the plasma current. By definition, such dis-
charges cannot be 100% bootstrap fraction discharges. Attainment of high-bootstrap-fraction
requires that heating sources drive no current directly. Perpendicular ECH heating, fast-wave
heating with a symmetric k||-spectrum, and thermonuclear reactions all fulfill this require-
ment. Figure 1 illustrates the coupling between transport, equilibria, and bootstrap current.
This work develops a framework to solve the coupled steady-state thermal conduction and
Grad-Shafranov equations.

Σ

Fig. 1.  Coupling between transport, equilibria, and bootstrap current physics.
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Previous modeling studies have used time-dependant codes in physics variables [8,9]. This
approach can handle more general heat conductivity models than our approach which is
restricted to analytic repesentations of the diffusivity and its scaling properties.

These studies follow the approach to equilibria while the framework developed here deals
with the eventual steady-state. Note that the 100% bootstrap discharge is a self-organized
system. Given the heating source and other evident parameters such as the toroidal field, size,
plasma shape, and density, the self-organized system will determine the plasma current,
temperature, and q profiles.

Section 2 develops our nondimensional steady-state model and Section 3 extends this to a
simplified 1-D version. Section 4 presents results. Section 5 shows data from DIII–D with
ECCD current drive and compares them with modeling studies of ECH-heated plasmas with
and without ECCD.

2.  Nondimensional Transport Modeling

The starting point is the familiar Grad-Shafranov and flux-surface-averaged heat transport
equations [10]. The first step is to convert these equations to nondimensional form based on a
nondimensional poloidal flux independent variable ψ̃  = ψ/ψo where ψo is the poloidal flux at
the discharge boundary. The following nondimensional variables are defined: dR =
(A/π)0.5du, dZ = (A/π)0.5dv, P = P(0) p( ψ̃ ),  n=no ρ( ψ̃ ), T=Toτ(ψ̃ ). Here A denotes the area
within the separatrix. With these definitions, the Grad-Shafranov equation takes the form
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where uo = Ro/(A/π)0.5 is the nondimensional geometrical axis. The first term with the [ ]
brackets is the Pfirsch-Schluter currents which have no net toroidal current. The second term
is the bootstrap contribution. Since the only net current source is the bootstrap current, the
resulting equilibria represent fully-aligned, 100% bootstrap fraction discharges [11]. All
physics quantities in Eq. (1) are collected into an eigenvalue λ1 = (A/π) (µo Po Ro2)/ (ψo2).
The value of λ1 is that needed to make the solution ψ̃=1 at the plasma boundary.

It is well known that density gradients are more effective than temperature gradients in creat-
ing bootstrap current. Our framework does not provide for a transport equation for plasma
density so we shall adopt a simple model relating the pressure, density and temperature pro-
files by assuming ρ = pγ, with γ ≤ 0.25, which corresponds to a weak density gradient. In this
case, the contribution to the bootstrap current drive takes the form

2γL31 + 2L31 + L32 + αL34( ) 1 − γ( ){ } ≡ CBS   , (2)

where the Lnm can be taken from the bootstrap current literature [12,13]. The parameter Cbs
will be retained (but considered a constant) to assess the relative roles of temperature and
density gradients. Reference [13] suggests that Cbs ≈ 0.6 for γ =0.25.

The Grad-Shafranov Eq. (1) is solved with the right-hand side is regarded as known and with
a separatrix , single-null outer shape. From this solution, a number of useful surface functions
are evaluated. Other, similar functions are evident.
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where i and  A  are the nondimensional plasma current and area within a flux surface and ′
denotes a derivative with respect to poloidal flux ψ̃ . The definition of s makes s a flux func-



3 EX/P3-18

tion, reduces to an appropriate cylindrical limit, and permits modeling of magnetic shear
effects on confinement.

Next, we turn to the heat transport loop and  calculation of the thermal diffusivity, which will
provide the density and temperature gradients needed by the Grad-Shafranov equation. The
crucial and poorly known physics of the thermal diffusion loop concerns how the poloidal
field affects the thermal difffusivity. By construction, the thermal diffusivity properties are:
1) overall, dimensionally-correct gyroBohm scaling, 2) gradients only with respect to
poloidal flux, reflecting the fact that density, temperature and presure are flux functions,
3) global confinement that depends only on the plasma current (and not on the toroidal field)
as supported by global databases [14], 4) a critical temperature gradient (dT/dψ)c = T/δψ,
5) no dependence of the thermal diffusivity on β, again in accordance with tokamak data [15].
And 6) an overall dependence on magnetic shear given by eαs with the shear s being defined
in Eq. (3) above. The thermal conduction equation is

  Pheat

S = C eαs n M0.5 A* T0.5

(2π)3 e2
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∂ψ – T

δ ψ     , (4)

where δψ is a finite increment in poloidal flux. All functions in  Eq. (4) are flux functions and
consequently the equation is one dimensional. The constant α  has been introduced by
construction as a measure of the importance of magnetic shear in determining the thermal
conductivity. This is motivated by the improvement in confinement in negative magnetic
shear regions. Cast in nondimensional terms, the thermal conduction equation reads

  τ′ τ′ + τ /δψ = λ 2
Π
Σ

2π
A ρ τ0.5 eαs    , (5)

where ρ = τγ/(1-γ) and the nondimensional surface area Σ  and power flow Π are defined by

  S = Σ (2π)2 Ro A /π 0.5
Pheat = Π Po A = A* / (4πA)

   , (6)

and the eigenvalue λ2 is
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One then solves Eq. (5) for p´, and integrates Eq. (5) from 0 to 1. The correct value of λ2
gives p (1.0) = 1.0.
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It remains to calculate the magnetic shear parameter. The plasma current can be readily
calculated as well. Eq. (9) describes the increase of plasma current with poloidal flux
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Combining both of the Eq. (9) leads to a differential equation for I2 and its nondimensional
form
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where λ3 = 8πA CtµoPo/Io2 and the flux function A*,  which is well fit by A* = 4π A =
(2π)2r2κ . It is also useful to introduce an approximate expression for the trapped particle
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fraction.ft = Ct(r/R)0.5. The next step is to use Eq. (10) to evaluate the LHS of Eq. (8),
resulting in an equation for U = i´/i
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As the sketch indicates, this equation has either two solutions or none for U > 0, indicating a
potentially fundamental incompatibility of the effect of a magnetic shear on high bootstrap
fraction plasmas under circumstances where an increasing outward plasma current creates
negative shear and low thermal diffusivity.

3.  One-Dimensional Model

It is elucidating to develop a one-dimensional model which captures the physics of the
coupled magnetic and heat diffusion loops yet permits easy variations in the thermal
diffusivity and other coupling terms to ascertain how profiles will respond. The key to the
one-dimensional model is Eq. (10) which can be integrated using r as an independant variable
and approximating A* = 4π A = (2π)2r2κ . One then uses the nondimensional pressure profile
determined by Eq. (8) and its corresponding eigenvalue in Eq. (11) to complete the solution.

4.  Results

Our principal result is construction of a framework which successfully accounts for plasma
current generated by pressure gradients via the bootstrap mechanism, the resulting magnetic
field, its effect on flux-surface-averaged thermal conductivity and hence on what must be a
self-consistent pressure gradient driven by a plasma energy source. The framework produces
nondimensional profiles and eigenvalues. Figures 2 and 3 are examples which give the
nondimensional temperature and
q-profiles for a case with no magnetic
shear dependence and the value of
δψ = 1.0 for  the critical gradient. For
nested circular cylinder geometry, a
simple 1-D model mode is available.

Evaluating the eigenvalues and nor-
malizing the thermal diffusivity to
DIII-D shot 10773 discussed below
gives:
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Fig. 2.  Nondimensional
temperature.
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Fig. 3.  Relative q profile.
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It is interesting that  the central temperature depends only on the heating power and not at all
on plasma density and size.

5.  DIII–D

Plasmas with high but not unity values for the bootstrap fraction have been produced on
DIII–D. Discharges 107736 had both directed NBI heating and the gyrotron systems set for
ECCD. Figure 4 shows that these discharges came close to fully noninductive per-
formance.Modeling studies (Figs. 5 and 6) utilizing a diffusivity normalized to shot 107736
indicate that 5 MW ECCD should suffice to increase plasma current but is insufficient to
maintain a 200 kA discharge by bootstrap ECH alone.
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Fig 4.  Nearly stationary discharge for over 2 s at high beta
(107736). (a) Plasma current, NB power (200 ms average;
the power is modulated to maintain constant stored energy),
and EC power. The transformer current is fixed from 2.0 s
onward. (b) βN, βp, and li. βN is held constant by the NB
feedback control. There is a very slow broadening of the
current profile indicated by the decreasing li.

6. Conclusions

A framework has been developed to construct plasma pres-
sure profiles consistent with 100% bootstrap-fraction
plasma current and which satisfy a flux-surface-averaged
heat conduction equation. Results are found to depend on
the form chosen for the heat diffusivity. When
confinement increases strongly with negative shear,
steady-state solutions can no longer satisfy the coupled
G r a d - S h a f r a n o v  a n d
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Fig. 5.  Plasma Current with 5 MW ECH
oriented for ECCD.
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Fig. 6.  Plasma current with 5 MW
ECH and no ECCD.

thermal conduction equations with only a bootstrap current source. The nondimensional
approach produces scaling relations for discharges with 100% bootstrap fraction and they
predict plasma currents of ~200 kA and T~ 2 keV for the capabilities of planned experiments.
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