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Abstract. The formation of internal transport barriers (ITBs) near g=2,3 surfaces in normal (NrS) or optimized
shear discharges of JT-60U and JET is well known. In reverse shear (RS) JT-60U plasmas, the role of g
minimum (gnin) equal to 3.5,3,2.5,2 is not obvious for ITB formation. 1TB-events (non-local confinement
bifurcations inside and around ITB in a ms timescale) are found in various JT-60U NrS and RS plasmas. Under
sufficient power, | TB-events are seen at rational and not rational values of g.,,. The space-time evolution of T,
and T; is similar even being strongly varied in space and time, suggesting same mechanism(s) of T, and T;
transport. The temporal formation of strong ITB in H-mode under passing of q.,=3 (after periodical
improvements and degradations via | TB-events with 8ms period) in RS mode with P,;=8MW is presented.
Under smaller power, ITB-events are observed only at rational values of g, In a weak RS shot with
Pri=4MW, abrupt rise of T, is seen at g.in=3.5, while more cases of T; rise are observed. The difference of the
Teand T; evolution seen regularly under the low power, suggests decoupling of T, and T; transport.

1. Introduction

The formation of internal transport barriers (ITBs) near g=2,3 surfaces in norma (NrS) or
optimized shear discharges of JT-60U and JET iswell known [1,2]. In reverse shear (RS) JT-
60U plasmas, the role of g minimum (gmin) equal to 3.5,3,2.5,2 is not obvious for ITB
evolution. The transient processes seen under crossing gmin=3 were first time reported in [3].
Later, non-local confinement bifurcations inside and around ITB (abrupt variations of
transport in a ms timescale within ~0.3r/a) were found in various JT-60U RS and NrS
plasmas and called ITB-events [4-6]. The maximum of heat flux variation is located near the
position of gmin. The series of ITB-events is able to create the strong ITB in H-mode
(Omin~2.7) with nearly doubled energy confinement time [6]. The influence of the radial
electric field calculated near ITB foot on wider ITB region was highlighted in [7]. Initidly,
another type of non-local (in ~90% of volume) abrupt jumps (bifurcations) of transport at fast
"globa" L-H-L transitions was found in JET and JT-60U plasmas with NrS [8-9]. At L-H-L
transitions in JT-60U plasmas with RS and ITB [5-6], the profile of the heat flux jump
follows the position of the safety factor minimum and penetrates into RS region deeper for
the weak ITB that for the strong one [6]. I TB-event degradation causes L-H transition [6].

2. 1 TB-eventsunder sufficient NBI power in RS

Under sufficient power in JT-60U RS plasmas, ITB-events are seen at rational and not
rational values of gmin and the space-time evolution of Te and T; is similar [4-6]. In the
present paper, we highlight the similarity of T and T; evolution by detailed comparison
Te(r,t) and T;(r,t) behavior (see Fig. 1) during strong ITB creation via series of ITB-events-
improvements A, C, F and further ITB degradation (shot 32423, 1.5MA/3.7T, L-mode edge,
Pui=8MW, gmin~2.7, See evolution of plasma parameters in [4]). The position and the
evolution of Te measured by 12-channels ECE heterodyne radiometer (data averaged in 0.5ms
interval) at channel 11 (Te1) correspond to the T3 evolution (changes of timetraces at the
timesA, D, F, K on Fig.1). The T; is measured with 17ms time resolution and ~0.06r/a space
resolution half width. The Tg.g evolution corresponds to the Ti;» evolution (changes of slopes
at thetimes C, E, F, H on Fig.1). The T position lies near the Ti1; position (times A, F, K).
The T position corresponds to the Tiip position. The evolution and the similarity of T and
T; transport at t=6.5-6.68s time interval was described in detaill [4]. The T;e evolution
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presented on Fig.l, shows the
similarity of the transport in a
longer time interval, including the
formation of double ITBs clearly
seen before time G (weak ITB
between T and Te, and strong
ITB between Teao and Teio. The
same trend is observed for Ti;
profile at t= 6.75s (the difference
between T, and Tz isequal to 1
keV and 2.5 keV for Tijzand Tizs
(r/a=0.73)). Strong ITB destroys
after time G.

The timetraces of shot 32474
(1.5MA/3.7T), the evolution of Te
and profiles in H-mode under
passing of gmin=3 are presented on
Figs 2(a-d). Four cycles of ITB-
events (called periodic ITB-events
or P-ITB-events) are seen on T,
evolution after t=6.68s (see Figs
2(c,d). Each cycle consists of
~4ms |ITB-event improvement
phase (Tes rise and Teo12 decay)
and ~ 4ms I TB-event

Fig. 1. Smilarity of T; and T, evolution in shot 32423. P, risesfrom 8MWto 10 MW at t=6.66 s.
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Figure 2(a) Timetraces of W, Py, and I, in shot 32474. Transitionless H-mode [10] starts from t
~5.7s. P- start of periodical | TB-events at qi»=3. (b) Positions of radiometer channels and T, (r) for
t=6.68, 6.9 s. (c-d) T, timetraces at periodical P-ITB-events and | TB-event-improvement |
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7 LA LA B BN N degradation phase (Tes
P decay and Teg1p rise). At
= t=6.75s confinement
S improves again via the ITB-
< event |, and the ITB foot
S locates at the position of
° ch.11 at t=6.9s (see Fig. 2(b))
= %) S I N B B instead of position of ch8

0 A2’ h6 8| 10 1AZ before ITB-events. T; evolves

Fig. 3. Profiles of Te; ,ne, and 0.41 ¢ i?ane S 0.71 similar to T, as usual.

g before time P at Fig. 2

Fig .4 Profiles of oy, estimated for P, | and D ITB-events

Profiles of Te; (rhombus and
circles), ne (triangles) g at

t =6.9s (dotted line) are shown on Fig.3. The inversion radius (region between T, rise and
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Fig. 5 Smulation of P-ITB-events (a) dx. profile,
(b) evolution of . intime (c) evolution of JT..

3. ITB-eventsunder small NBI power in RS

decay at ITB-events on Fig 2(c) lies
near the position of Qmin, as usual [4-
6]. The Oxe profilesat ITB-events
P, I and D (degradation which occurs
later and not shown on Fig.2) were
caculated from abrupt variations
0 TJ0 t values at times of 1TB-events
(see method in [4]).

Fig. 5 presents modelling of
periodical ITB-events with the profile
of the e€lectron heat diffusivity
coefficient variation dxe shown in Fig.
5. The evolution of ¥ and
caculated values of 8T at various
radial positions are shown on Figs. 5
(b-c). The calculations reasonably
describe the experiments shown on
Fig. 2(c-d). We suppose that the
periodical “global” L-H-L transitions
with 20ms period (10ms H-mode
phase and 10ms L-mode phase) found
in JET [11] are clear physical
analogue to the periodical ITB-events
described above.

Under smdler

4 O a LT I

gmin, Ip(MA)

W (MJ), Ha ,

o

7
time (sec)

Fig.6. Timetraces of 1, W, H, , Pryi @and qyin in shot 36639

1o power, ITB-
~ events (in ~20
2 pulses studied)
= ae  connected
£ with some low
1 order  rational
o Omin values. ITB-

events are found
at Pnbi: 2.5MW
in the latest phase
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of RS discharge 36639 (1.4MA /3.8T) under gmin=2.5 (see Fig. 6).

10 Moreover, the influence of some
= low order rational gmin values is
2 seen clearly for tempora ITB
3
a

ITé event V

creation on Te. The timetraces of
< shot 38976 (1.3MA/3.7T) are
tlme (sec) ' shown on Fig.7. The abrupt rise of
Teisseen only once at min=3.5 at

O

W (MJ), Ip(MA)

Fig. 7 Timetraces of |,, Wand P, in shot 38976

t=5.87s while more cases of T; rise are observed (after t=6.1s also). The timetrace of the row
heterodyne data is shown on Fig.8. Therise of Te is seen at t=5.87s (Qmin=3.5 at this time)
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Fig. 8. Timetrace of T, (0.35), similar behavior seen at Fig. 9. Profile q at t=5.9 s with
0.2<r/a<0.4 region in shot 38976 gmin=3.42 in shot 38976

in the wide region 0.18<r/a<0.42. The profile of the electron heat diffusivity variation dxe iS
obtained from abrupt variation of 0T¢/0t values at t=5.87s in the same way like described in

4 detail in [4] and is wide in space
i Ti 7 (r/a=0.2) v (inthe region over 0.5r/a). Theq
profile at t=5.9s is presented on
Fig. 9. The wide region of small
shear is observed clearly. In this
particular shot 38976 case, T;
evolves similar to Te a gmin=3.5

w
o

gJ<eV)

Eop 1 Ti 9(r/a=0.32) and rises separately from T, at

25 : - t=6.1s(see Fig.10).  Thesame

[ 1 i ] behavior of T and T; is
ITB- Ti 10(0.39) e i

' event | | 0 observed in the similar shot

256 e o 62' ' '64' ' '66 38974. Theriseof Toccurs at

' ' time (ms)' ' ' t=5.92 s (close to t=5.86s in shot

3896).
Fig. 10 Timetraces of T; in shot 38976

The difference of the T, and T; evolution seen regularly under the low power, suggests
decoupling of T¢ and T; transport.

4. Discussion and Conclusions

Besides well-known formation of ITBs near q=2,3 surfaces in NrS or optimized shear
discharges of JT-60U and JET [1-2], similar features are sometimes seen in small machines
with ECR heating. The existence of the zones with improved transport near low-order-
rational q values was reported at RTP [13]. The zone of the improved transport formed by
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off-axis ECRH in T-10 (the region with low shear and q near 1 inside ~0.3r/a) is able to
survive at R/Lte = Rgrad Te/ Te Up to 23 with X ~0.1-0.2 m?/s [14].

Under sufficient power in RS JT-60U plasmas, the space-time evolution of T, and T; due
to series of ITB-events improvements and degradations is similar even being strongly varied
in time and space. The same physical mechanism(s) is responsible for Te and T; evolution at
ITB-events. ITB-events are observed under various values of gmin. The periodical ITB-events
with ~8ms period are found in H-mode RS plasmas under crossing gmin=3. Probably the
clearest analogues are periodical "globa” L-H-L transitions with 20ms period found in JET
[11].

Under smaller power in JT-60U RS plasmas, the space-time evolution of T and T; could
be different from each other. The transport looks different for T, and T;. The influence of
some low order rational gmin Valuesis seen clearly for temporal creation of the ITB on Te and
for series of small-scale ITB-events on T.. At present, we observe ITB-events at low order
rational gmin values only.

ITB-events triggers could be different in various JT-60U plasmas. The role of MHD-
activity as ITB-event improvement trigger should be studied in future. The correlation of the
MHD-activity and ITB-event improvement within a millisecond timescale was found
sometimes (not frequently). The correlation of the coupled edge-core MHD-activity and ITB
formation (unfortunately within ~100ms time interval) was reported on JET [11]. A physical
mechanism of non-local bifurcations of the core transport at the ITB-events is till unclear.
Further study of ITB-events (especially in low power cases) and ITB-events triggers is
necessary.
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