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Abstract.  The ITPA Confinement and H-mode Threshold Databases have been used to analyze energy 
confinement at high density and the dependencies of the H-mode threshold power on aspect ratio (R/a = 1/ε), 
edge safety factor, and plasma effective charge (Zeff). High density data from ASDEX-Upgrade, DIII-D, and 
JET indicate that with peaked density profiles it is possible to maintain good global energy confinement (H98y2 
~ 1) up to and beyond the Greenwald density limit even though the loss power ( ) 
does not exceed the H-mode threshold power scaling.  The new low aspect ratio MAST data in the threshold 
database permits initial regressions to be made including the aspect ratio.  The inverse aspect ratio dependence 
of the threshold power cannot be determined with the present dataset due to inconsistencies in the threshold 
between low inverse aspect ratio devices (ASDEX, PBX-M) and MAST.  New scalings for the threshold power 
have been produced, which yield similar values as previous scalings for the predicted threshold power in ITER. 
There is an increase in the H-mode threshold at low q

dW/dt  -P  P  P abs
auxOHL +=

95 < 3 found in ASDEX-Upgrade, COMPASS, DIII-D, 
JFT-2M, JT-60U, TCV, and TUMAN-3M.  The strong increase in the threshold power at low density is also 
correlated with increased Zeff.  
 
1. Introduction 
 
The ITPA Confinement [1] and H-mode Threshold [2] Database Working Groups analyze 
global parameters from a number of tokamaks worldwide to better understand the physics of 
energy confinement in a tokamak and of the transition between L and H-mode.  Another aim 
of the work is to improve confinement and threshold predictions for future devices.  In the 
confinement area, high density data from DIII-D, ASDEX-Upgrade, and JET approaching or 
exceeding the Greenwald density limit have been added to the database allowing improved 
analysis of confinement at high density.  In the threshold area, new data from Alcator C-Mod 
include an inner gap scan as well as corrections to the absorbed ICRF power. New threshold 
data from ASDEX Upgrade in the new divertor DIVIIb, allowing well baffled operation at 
higher triangularity, have been added to the database. This dataset includes 58 threshold 
points with NBI and ICRF and variations of BT, Ip and density. A particular feature of this 
contribution is that it also includes a variation in triangularity up to 0.35 compared to the 
previous maximum value of only 0.15. These points suggest an increase of the power 
threshold with triangularity. New initial ohmically heated H-mode threshold results in double 
null deuterium plasmas with inboard gas puffing from the low aspect ratio spherical tokamak 
MAST have also been included in the database. The double null configuration was chosen 
because it has a lower threshold than single null for these conditions [3]. The inboard gas 
puffing was shown to lower the threshold in COMPASS-D [4] and this effect also takes place 
in MAST [5]. Data were taken from a density scan at fixed toroidal magnetic field, BT≈0.4T 
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Fig. 2. IPB98(y,2) H-factor vs n/nG from 
the H-mode Confinement Database.  
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Fig. 1. IPB98(y,2) H-factor vs PL/Pthr 
from the H-mode Confinement 
Database with the latest H-mode 
threshold power scaling from Eq. 1. 
vacuum field at magnetic axis), plasma current Ip≈0.6MA, major radius R≈0.75m, minor 
adius a≈0.52m (εMAST=a/R=0.68) and elongation κ≈1.9. There are also new data from TCV 
t higher safety factor (q95 > 2.5), which have a lower threshold.  H-mode threshold data from 
he small circular tokamak TUMAN-3M in Russia have also been included in the database. 

. Confinement Analyses 

The high density data from ASDEX-Upgrade, DIII-D, and JET indicate that, under 
ome conditions with peaked density profiles, it is possible to maintain good global energy 
onfinement (H98y2 ~ 1) up to and beyond the Greenwald density limit even when the loss 
ower ( ) is near the H-mode threshold power scaling dW/dt - P  P  P abs

auxOHL +=
94.089.078.061.067.1 RaBn Te⋅Pthres = ). Of possible interest to next step devices, a number of 

achines find that good energy confinement relative to the standard H-mode scaling [1] 
IPB98(y,2) ~ 1) can be obtained in H-mode down to a ratio of PL/Pthr < 1 (Figure 1).  These 
ata suggest that good confinement can be obtained in H-mode even when the loss power is 
nly just above the threshold power scaling at H-mode densities. An estimate of the power 
ecessary to ensure good H-mode confinement is then the H-mode threshold power scaling 
valuated at the desired steady-state H-mode density.  

Figure 2 shows the H-mode energy confinement scaling IPB98(y,2) versus n/nG, 
here nG (1020 m-3) = Ip(MA)/(πa2) is the Greenwald density limit [6]. While most of the 
atabase lies between 0.3 < n/nG < 0.8, a number of points from ASDEX-Upgrade, DIII-D, 
nd JET reach and even exceed n/nG = 1 while maintaining good energy confinement, though 
here is a weak degradation at very high values.  In the highest density cases, densities up to 
0% above the Greenwald limit were reproducibly achieved in high confinement, ELMing H-
ode discharges in DIII-D [7]. Simultaneous gas fueling and good divertor pumping were 

mportant to achieving these results. Spontaneous peaking of the density profile was also 
mportant as without this profile peaking the energy confinement at high density degraded 
ue to a reduced H-mode pedestal pressure associated with closely coupled core and pedestal 
emperatures observed at high density [8]. The IPB98(y,2) H-factor also shows a weak 
ncrease with density peaking factor ( )//(5.0 0 eeeen nnnn +⋅=γ ) [9].  The regression fit to 
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the residuals for these two effects is H98(y,2) = (1 – 0.07 n/nG + 0.17 γn), showing that they 
have small influences on the overall H-factor, however, for interaction between shaping and 
n/nG, refer to Kardaun [10]. 
  
 Experimentally observed confinement times for L- and H-mode discharges in T-10 
are in good agreement with the predictions of both the L-mode [11] and the IPB98(y,2) H-
mode scalings. It may be a result of the crossing of these scalings at high aspect ratios A ~ 5, 
which is the same as the T-10 tokamak, but may also be an effect of normalized magnetic 
field related to inverse ρ* [9,12]. 
 
3. Threshold Analyses 
 
The new data added to the threshold database warrant new regressions to better determine a 
predictive scaling for the threshold power in future devices.  In particular, the higher q95 data 
from TCV with lower thresholds have brought its data in line with many of the other 
tokamaks. The new low aspect ratio MAST data now extend the range of inverse aspect ratio 
in the database to 0.16 < ε < 0.69, which should permit initial regressions to be made 
including the inverse aspect ratio. However, the dependence of the threshold on inverse 
aspect ratio is not consistent across the various tokamaks.  In particular, PBX-M and ASDEX 
have the lowest ε, with high and low elongation, respectively.  MAST has the highest ε and 
has high elongation, yet all three of these devices lie well above the threshold scalings 
without ε and κ.  This would imply that the threshold power increases at both low ε and high 
ε and/or at both low κ and high κ.  The initial MAST results are also in a double null 
configuration where for conventional aspect ratio tokamaks the H-mode threshold is often 
considerably higher than in single null. When regressions are performed including PBX-M 
and ASDEX but not MAST, a weak negative dependence of the threshold on ε is found.  
When PBX-M and ASDEX are excluded but MAST is included, a weak positive dependence 
of the threshold on ε is found.  Due to these inconsistencies in the data from these machines, 
it is not possible with the present database to determine a reliable scaling of the threshold 
power including the inverse aspect ratio dependence with all of these devices.  
 
 To compare with the previous work on the H-mode threshold scalings from this 
database group [2], new regressions have been performed on the 9 tokamaks that satisfy the 
standard low threshold criteria including deuterium plasmas with a single null with the ion 
∇B drift toward the X point (excluding  PBXM, MAST and TUMAN-3M).  In the previous 
work, all low density points with en < 2.2 × 1019 m-3 were excluded because they tended to 
have higher thresholds.  Now, this low density limit has been adjusted for each machine.  The 
new fits for these 9 tokamaks are (660 points):   
        18.094.013.089.006.078.007.061.030.067.1 ±±±±⋅±= RaBnP Tethres         RMSE = 25.1%     (1) 

        03.084.006.087.006.046.0005.0050.0 ±±±⋅±= SBnP Tethres                     RMSE = 26.0%     (2) 
where the standard regression variables of line averaged density and toroidal field are used 
together with either the major and minor radii or a formula for the surface area of the plasma, 
S = 4π2aR((1+κ2)/2)0.5.  The units here and throughout the rest of the paper are MW, 1020 m-3, 
T, lengths in m. The root mean square errors of these fits are about 1% lower than those of 
the previous work and the toroidal field dependence has increased, the density dependence 
has decreased, and the size dependence is nearly the same as before.  Figure 3 shows the fit to 
Eq. 2 and the PBXM, MAST, and TUMAN-3M data have also been plotted for comparison. 
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Fig. 3. Measured H-mode threshold power 
vs. a regression fit to the data from nine 
tokamaks (with asterisks) given by Eq. 2. 
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Fig. 5. Measured H-mode threshold power 
normalized to that of Eq. 3 vs. q95 showing 
a trend to increase the relative threshold 
power for q95 < 3. 
okamaks on a common scale. There is a clear in
ncreasing Zeff.  This suggests that the low densi
orrelated with increasing Zeff at low density. 

. Conclusions 

nder some conditions with peaked density prof
PB98(y,2) ~ 1 up to and beyond the Greenwald
evel of energy confinement at a power level giv
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imilar configurations (Eq. 3) for the threshold p
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en  = 2.4 × 1020 m-3 , BT = 10 T) and Ignitor (at 
nd 17 MW, respectively.  Low q95 < 3 and high
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