(EX/C2-4) Towards the Realization on JET of an Integrated H-Mode Scenario for ITER
J. Ongena1),
P. Monier-Garbet2),
W. Suttrop3),
Ph. Andrew4),
M. Bécoulet2),
R. Budny11),
Y. Corre17)
G. Cordey4),
P. Dumortier1),
Th. Eich5),
L. Garzotti15),
D.L. Hillis12),
J. Hogan12),
L.C. Ingesson6),
S. Jachmich1),
E. Joffrin2),
P. Lang5),
A. Loarte7),
P. Lomas4),
G.P. Maddison4),
D. McDonald4),
A. Messiaen1),
M.F.F. Nave8),
G. Saibene7),
R. Sartori7),
O. Sauter9),
J.D. Strachan10),
B. Unterberg5),
M. Valovic4),
I. Voitsekhovitch19),
M. von Hellermann6),
B. Alper4),
Y. Baranov4),
M. Beurskens4),
G. Bonheure1),
J. Brzozowski10),
J. Bucalossi2),
M. Brix5),
M. Charlet4),
I. Coffey4),
M. De Baar4),
P. De Vries6),
C. Giroud6),
C. Gowers4),
N. Hawkes4),
G.L. Jackson13),
C. Jupen10),
A. Kallenbach3),
H.R. Koslowski5),
K.D. Lawson4),
M. Mantsinen18),
G. Matthews4),
F. Milani4),
M. Murakami
12)13),
A. Murari14),
R. Neu3),
V. Parail4),
S. Podda14),
M.E. Puiatti15),
J. Rapp5),
E. Righi7),
F. Sartori4),
Y. Sarazin2),
A. Staebler3),
M. Stamp4),
G. Telesca15),
M. Valisa15)
B. Weyssow16),
K.D. Zastrow4),
EFDA-JET Workprogramme Contributors*)
1) LPP / ERM-KMS, Association EURATOM-Belgian State, Brussels, Belgium†
2) CEA Cadarache, St Paul lez Durance, France
3) Max-Planck Institut für Plasmaphysik, EURATOM Association, Garching, Germany
4) EURATOM/UKAEA Fusion Association, Culham, UK
5) Institut für Plasmaphysik, Forschungszentrum Jülich GmbH, EURATOM Association, Jülich, Germany†
6) FOM-Instituut voor Plasmafysica, EURATOM Association, Nieuwegein, Netherlands†
7) EFDA-Close Support Unit, Germany
8) Centro de Fusão Nuclear, Association "EURATOM-IST", Lisbon, Portugal
9) Centre de Recherches en Physique des Plasmas, Ecole Polytechnique de Lausanne, Association "EURATOM-Confederation Suisse", Lausanne, Switzerland.
10) Chalmers University of Technology, Association "EURATOM-NFR", Göteborg, Sweden
11) Princeton Plasma Physics Laboratory, Princeton University, NJ, USA
12) Oak Ridge National Laboratory, Oak Ridge, TN, USA
13) DIII-D National Fusion Facility, San Diego, CA, USA
14) Associazione EURATOM-ENEA sulla Fusione, Centro Ricerche Frascati, Frascati (Rome), Italy
15) Consorzio RFX - Associazione Euratom-Enea sulla Fusione, Padova, Italy
16) Université Libre de Bruxelles, Association "EURATOM-Belgian State", Physique Théorique et Mathématique, Unité de Physique des Plasmas, Brussels, Belgium
17) KTH, Royal Institute of Technology, Association “EURATOM-VR”, Stockholm, Sweden
18) Helsinki University of Technology, Association “EURATOM-Tekes”, Helsinki, Finland
19) Equipe Turbulence Plasmas, PIIM, Universite de Provence, Marseille, France
*) See annex in J.Pamela, OV/1-4, FEC 2002
Abstract. ELMy H-Mode experiments at JET since 2000 have focussed on the
steady state and simultaneous realization of the ITER QDT=10 requirements in
the normalized parameters for density, confinement and beta. Steady state
phases ( 6s or
15) in
discharges satisfying these requirements have been obtained by (i)
increasing the triangularity to the ITER reference value
(
0.5) and in plasmas at low
0.2 by seeding of Ar. Impurity seeding in high
delta discharges increases the radiation level to that needed for ITER, and
further increases density and confinement of unseeded reference discharges.
An optimised HFS pellet injection sequence is another means to increase
density and confinement. Density peaking, which would increase further
ITER's performance, has been obtained with pellet injection, impurity
seeding in low delta discharges and in unseeded ELMy H-Mode discharges with
carefully tuned gas fuelling. Promising evidence for a reduction of the
heat load caused by ELMs in high density discharges, further enhanced by
impurity seeding, will be discussed. Destabilization of NTMs can limit the
plasma performance and methods to avoid these
will be summarized.
IAEA 2003