Full Paper
Contents  Return  Previous Page  Next Page  Index

Return To: Session FT/2 - Engineering Design
Prev Page: (FT/2-5) Objectives and Design of the JT-60 Superconducting
Next Page: (FT/2-D) Discussion of Session FT/2

(FT/2-6) Exploration of Burning Plasmas in FIRE

D.M. Meade1), C.E. Kessel1), G.W. Hammett1), S.C. Jardin1), M.A. Ulrickson2), P. Titus3), P. Heitzenroeder1), B.E. Nelson4), J.H. Schultz3), R.J. Thome5), J.C. Wesley5), J. Mandrekas6), G.A. Navratil7), J. Bialek7), T. Rognlein8), T.K. Mau9), R. Budny1), N. Gorelenkov1), P.H. Rutherford1), K.M. Young1), J.A. Schmidt1)
1) Princeton Plasma Physics Laboratory, Princeton, NJ, USA
2) Sandia National Laboratory, Albuquerque, NM, USA
3) Massachusetts Institute of Technology, Cambridge, MA, USA
4) Oak Ridge National Laboratory, Oak Ridge, TN, USA
5) General Atomics, San Diego, CA, USA
6) Georgia Institute of Technology, Atlanta, GA, USA
7) Columbia University, New York, NY, USA
8) Lawrence Livermore National Laboratory, Livermore, CA, USA
9) University of California at San Diego, San Diego, CA, USA

Abstract.  The Fusion Ignition Research Experiment (FIRE) design study has been undertaken to define the lowest cost facility to attain, explore, understand and optimize magnetically-confined fusion-dominated plasmas. FIRE activities have focused on the physics and engineering assessment of a compact, high-field tokamak with the capability of achieving Q greater than 10 in the Elmy H-mode for a duration of about 2 plasma current redistribution times ( $ \tau_{cr}$) during an initial burning plasma science phase. The configuration chosen for FIRE is similar to that of ARIES-RS, the U. S. Fusion Power Plant study utilizing an advanced tokamak reactor. The reference design point is: Ro = 2.14 m, a = 0.595 m, Bt(Ro) = 10 T, Ip = 7.7 MA with a flat top time of 20 s (about 1.7 $ \tau_{cr}$) for 150 MW of fusion power. FIRE will utilize only metal plasma facing components; Be coated tiles for the first wall and W brush divertors to reduce tritium retention as required for fusion reactors. A longer term goal of FIRE is to explore advanced tokamak regimes with bootstrap fractions ( fBS) about 70% at $ \tau_{cr}$ about 3.5 at high fusion gain (Q greater than 5) for a duration of 1 to 3 $ \tau_{cr}$.

Read the full paper in PDF format.

IAEA 2003