(IC/P-10) Progress with Helicity Injection Current Drive
T.R. Jarboe1),
R. Raman1),
B.A. Nelson1),
M. Bell2),
R. Bell2),
D.A. Gates2),
P. Gu1),
W.T. Hamp1),
V.A. Izzo1),
H.W. Kugel2),
R.J. Maqueda3),
J.E. Menard2),
D. Mueller2),
M. Nagata4),
R.G. O’Neill1),
M. Ono2),
F. Paoletti5),
S. Paul2),
M. Peng6),
A.J. Redd1),
S. Sabbagh5),
M.J. Schaffer7),
P.E. Sieck1),
C.H. Skinner2),
R.J. Smith1),
V. Soukhanovskii2),
D. Stutman8),
X.Z. Tang3),
L. Zakharov2),
NSTX Research Team2)
1) University of Washington, Seattle, WA, USA
2) Princeton Plasma Physics Laboratory, Princeton, NJ, USA
3) Los Alamos National Laboratory, Los Alamos, NM, USA
4) Himeji Institute of Technology, Himeji, Japan
5) Columbia University, New York, NT, USA
6) Oak Ridge National Laboratory, Oak Ridge, TN, USA
7) General Atomics, San Diego, CA, USA
8) Johns Hopkins University, Baltimore, MD, USA
Abstract. Helicity injection current drive has the potential of sustaining
the currents in magnetic fusion confinement devices with much higher power
efficiencies then beams or rf. Progress in developing this method on the
National Spherical Torus Experiment (NSTX, major radius Ro = 0.86 m
and aspect ration A = 1.25) at the Princeton Plasma Physics Laboratory and
the Helicity Injected Torus (HIT, Ro = 0.3 m and A = 1.5) program at
the University of Washington are reported. On NSTX and HIT toroidal
currents of 0.4 MA and 0.25 MA, respectfully, have been achieved. The issue
of closed flux generation is discussed both in terms of possible mechanisms
and experimental evidence. Finally, 3D MHD simulation results are presented
for a new constant-inductive-helicity-injection spheromak experiment, which
is being built.
IAEA 2003