Full Paper
IAEA-CN77
Contents  Return  Previous Page  Next Page  Index


Return To: Session EX/P1 - JET, Small Tokamaks, Other Confinement
Prev Page: (EX/P1-11) Turbulence and Transport with Spatial-temporal Biasing on
Next Page: (EX/P1-14) Observation of Pre- and Postcursor Modes of


(EX/P1-13) Internal Transport Barrier Triggering by Rational Magnetic Flux Surfaces in Tokamaks

E.H. Joffrin1), C.D. Challis2), G.D. Conway3), X. Garbet1), A. Gude3), S. Guenther3), N.C. Hawkes2), T.C. Hender2), D. Howell2), G.T.A. Huysmans1), E. Lazzaro4), P. Maget1), M. Marachek3), A.G. Peeters3), S.D. Pinches3), S. Sharapov2), JET EFDA Contributors
 
1) CEA Cadarache, Association EURATOM-CEA sur la Fusion, St-Paul-lez-durance, France
2) Euratom/UKAEA Fusion Association, Culham Science Centre, Abingdon, Oxfordshire, UK
3) Max-Planck-Institut fur Plasmaphysik, Euratom Association, Garching, Germany
4) Istituto di Fisica del Plasma del CNR, Assoc. Euratom-ENEA-CNR per la Fusione, Milan, Italy

Abstract.  The formation of Internal Transport Barriers (ITBs) has been experimentally associated with the presence of rational q-surfaces in both JET and ASDEX Upgrade. The triggering mechanisms are related to the occurrence of magneto-hydrodynamic (MHD) instabilities such as mode coupling or fishbone activity. These events could locally modify the poloidal velocity and increase transiently the shearing rate to values comparable to the linear growth rate of ITG modes. For reversed magnetic shear scenario, ITB emergence occurs preferentially when the minimum q reaches an integer value. In this case, transport effects localised in the vicinity of zero magnetic shear and close to rational q values may also contribute to the formation of ITBs. The role of rational q surfaces on ITB triggering stresses the importance of q profile control for advanced tokamak scenario and could contribute to lower substantially the access power to these scenarios in next step facilities.

Read the full paper in PDF format.

IAEA 2003