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Abstract. The effect of a steady toroidal field (TF) on rotating magnetic field (RMF) current drive, the
interaction of neutral beams with Field Reversed Configurations (FRC) and the relaxed (minimum dissipation)
states of tokamaks sustained by helicity injection are studied.

1. Effect of a Steady Toroidal Field on RFM Current Drive

RMFs have been used to drive current in Rotamaks, FRCs and spherical tokamaks (ST) [1].
We consider an infinitely long, hollow, plasma column with a finite radius conductor running
along its axis. The physical model is the same as in most previous studies, fixed ions and
Ohm’s law with the Hall term for electrons. Instead of using a Fourier decomposition in θ a
fully 2D (r, θ) numerical code that solves the time dependent problem is employed.

The coils that produce the RMF are assumed to be far from the plasma and the RMF is written

as: )tcos(BBrot
r θ−ω= ω , )t(sinBBrot θ−ω= ωθ . Using Ohm’s law and Maxwell's

equations a set of equations for Bz and Az can be obtained. Az is separated in two parts: Az=
Az,vac + Az,pl, where Az,vac contains the contribution of the stationary axial current (calculated
analytically) and Az,pl the contribution of the plasma and the external coils. Normalizing the
radius with rb (outer plasma radius) the following dimensionless equations are obtained:
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η is the resistivity, assumed uniform, and Btor is the vacuum toroidal field at r=1, normalized
to Bω. Knowing A and B, the other magnetic field components can be easily calculated. To
solve Eqs. (1) we need boundary conditions at the inner (r=ra) and outer plasma boundaries. A
must provide the desired RMF far enough from the plasma and have a continuous radial
derivative (Bθ=-∂Az/∂r) at both boundaries. B is uniform both inside and outside the plasma
column but its value on the inside changes with time due to changes in the plasma current.

The efficiency is defined as the ratio between the azimuthal plasma current and the current
that would be produced if all the electrons rotate rigidly with frequency ω. Fig. 1 is a plot of
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the steady-state efficiency vs. Btor for γ
=14.9, λ=11.07 and ra=0.15. The aspect
ratio is Ar=(rb+r a)/(rb-ra)=1.35. In an FRC,
these values of λ and γ result in incomplete
field penetration and an efficiency of 0.42
[2]. For small values of Btor

(Btor<
crit
torB ≅1.26) there are two solutions.

The initial conditions determine the branch
towards which the system evolves. If we set

Btor<
crit
torB  and start with a plasma that has

no azimuthal current, the solution follows the low efficiency branch (LEB) (dashed line) in
Fig. 1. When Btor becomes larger than the critical value, and the same initial conditions are
used, the efficiency jumps to the high efficiency branch (HEB) (full line). To access the HEB
for Btor less than the critical value (dotted line) it is necessary to start with a solution having

Btor >
crit
torB  and slowly decrease Btor. In the HEB the efficiency decreases with Btor while in the

LEB the efficiency initially increases and later decreases. This behavior was observed in the
experiments [1] and also reported in Ref. [3]. With the same value of λ, and γ =16.6, the
efficiency obtained for an FRC is unity. Using these values λ and γ, and Btor =0, we also
obtained an efficiency of 1. As Btor increases, the efficiency decreases taking similar values to
those shown in the HEB of Fig. 1. For 0.53≤Btor≤0.77 there is another solution.

The effect of the steady TF on the azimuthal current density profile is shown in Figs. 2 and 3,
which present plots of the averaged (over θ) jθ vs. r for the two branches shown in Fig. 1. Fig.
2 corresponds to the LEB and Fig. 3 to the HEB; three values of Btor are considered in both
cases. In Fig. 2, when Btor =0 (full line) there is a large region, up to r≅0.5, inside the plasma
with negligible jθ and a narrow region, r≥0.9, on the outside where the electrons rotate rigidly
with frequency ω. When Btor=0.5 (dashed line) jθ increases on the inside, in the region 0.3≤r≤
0.5, and decreases for r≥0.6, giving an overall increase in the total plasma current. Finally,
when Btor=1.15, jθ is comparable to that obtained with Btor=0 for r≤0.6 and significantly
smaller at larger radius. In Fig. 3, when Btor=0 the efficiency is 1 and the electrons rotate with
frequency ω everywhere. As the steady TF increases (Btor=4, dashed line), a region with
negligible, even reversed, current density appears. As Btor increases further (Btor=8.0, dotted
line) the width of this region increases.

The existence of diamagnetic poloidal currents was studied for the two branches considered
above. For the LEB there is a significant diamagnetic effect, with a reduction of more than
20% in the total azimuthal field (compared to the vacuum field) when Btor=1.15. For the HEB
the diamagnetism is negligible (less than 3%).

FIG. 1. Efficiency vs. steady TF for γ=14.9,
λ=11.07 and ra=0.15.

FIG. 3. Averaged jθ vs. r for HEB.
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        FIG. 2. Averaged jθ vs. r for LEB



2. Beam-plasma interaction in FRCs

Neutral beam injection is one of the methods proposed for heating and current drive in FRCs.
In addition, it can supply a population of large gyroradius ions which contribute to stabilizing
the internal tilt mode. Experiments on neutral beam injection have begun recently [4]. We
study the interaction of a neutral beam with an FRC plasma. This includes the ionization of
the neutral atoms and the transference of momentum and energy to the plasma. The current
carried by the beam and the changes it produces in the equilibrium are also calculated. The
Monte-Carlo code employed follows the actual trajectories (no gyro-averaging) of an
ensemble of particles. This is necessary in FRCs because the lack of toroidal field results in
complex orbits, with large radial excursions, for the energetic particles.

The ionization processes included are ionization by collisions with electrons and ions and by
charge exchange; both from the ground and from excited states. The effect of  Coulomb
collisions is introduced via Fokker-Planck operators which are used to calculate the power
and momentum transferred to electrons and ions. An iterative algorithm is used to calculate
the self-consistent beam current and the 3D density and magnetic field profiles. Starting with
a given equilibrium the beam code is employed to calculate the stationary beam current
produced by continuous injection. A Grad-Shafranov equation that includes a term with the
beam current is then solved to calculate a new equilibrium and the sequence (beam code plus
equilibrium code) is repeated until the solutions converge. In the Grad-Shafranov equation,
the relationship between the pressure (P) and the magnetic flux is assumed to be: P=G0[ψ/ψ0-
D(ψ/ψ0)

2] , where G0 is a constant, ψ0 is the flux at the magnetic null and D is a parameter that
controls the shape of the equilibrium. The equilibria have elliptical shape, with peaked current
profile, for D<0, and racetrack shape, with hollow profile, for D>0. The equilibria considered
have a cylindrical separatrix with a radius of 30 cm and a half length of 120 cm. The external
magnetic field is 5 kG, the temperature is 800 eV and the radius of the magnetic null is 21 cm.
The peak density results 8-10x1014 cm-3.

The injection geometry is shown in Fig. 4. We consider a
mono-energetic deuterium beam injected in a deuterium
plasma and restrict to midplane (z=0) injection perpendicular
to the FRC axis. The impact parameter (b) is important in
determining the initial value of the azimuthal component of
the velocity (vθ) of the ions (just after ionization). Particles
injected with small b are ionized with low vθ, and follow
orbits with large radial excursions. On the other hand,
particles injected with b around or above the null radius are
trapped in orbits with larger vθ. In spite of these differences, the total azimuthal current
carried by the trapped beam (Ib) does not change very much.  The particles with large radial
oscillations (small b) carry less current, but spend more time in low density regions.
Therefore, they take longer to slow down and compensate their lower current (smaller vθ)
with their longer slow down times.

The dependence of the beam current (Ib) with the neutral injection current (IN) and the energy
of the neutral atoms (EN) is shown in Figs. 5 and 6 respectively. In Fig. 5, the relationship
deviates from linear because the beam modifies the magnetic field, increasing the density
around the injection region. In the peaked case this occurs at lower beam currents and the
region of linear behavior is smaller. For high IN and EN (Fig. 6) the beam current is larger in

b

FRC axis

Neutral beammagnetic null

FIG. 4 Injection geometry
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the hollow case than in the
peaked case. This is due to the
larger density increase pro-
duced by the beam in the
second case.

Figs. 7 and 8 show the power
transferred to the electrons
(Pe), to the ions (Pi) and the
total value (Pt) as a function of
EN, for hollow and peaked
plasmas respectively. For low
EN, the beam particles transfer
most of the power to the ions.
When EN increases, and the
velocity of the beam particles
approaches the mean electron
velocity, most of the power is
transferred to the electrons.
The difference between the
transferred power and the
injected one (PN) is due to
particle losses. The losses
occur mostly at the ends of the
FRC, and are larger in hollow
than in peaked equilibria. For
higher EN, the self-confining
effect reduces the beam spread
and therefore the losses at the ends, improving the efficiency of the power transfer.

3. Minimum dissipation states in tokamaks sustained by coaxial helicity injection

In driven systems, the minimum dissipation principle could be more appropriate than the
minimum energy principle because it allows for the introduction of balance constraints
(injection=dissipation) and non uniform/anisotropic  resistivity effects. We used the principle
of minimum rate of energy dissipation to calculate relaxed states for tokamaks with
anisotropic resistivity sustained by coaxial helicity injection. To minimize the Ohmic
dissipation rate with the constraints of helicity balance (injection rate=dissipation rate) and
∇⋅B=0 the following functional was introduced:

( ) ( )( ) τ⋅∇γ−⋅ϕ+τ⋅η
µ
λ−τη+η= ∫∫ ∫ ∫ dddjjW ////// BdSBBj
0

222
HH

where // and H refer to the direction of the magnetic field, η is the resistivity, ϕ is the applied
electrostatic potential and λ and γ are Lagrange multipliers. The Euler-Lagrange equations
obtained by setting the first variation of W (δW) equal to zero were solved numerically (in
2D) using boundary conditions that include the basic features of the experimental situation
(existence of magnetized electrodes for helicity injection) and result in the cancellation of the
surface term in δW.

FIG 5: beam current vs. injected
current of neutral atoms. EN=20
keV.

FIG 6: beam current vs.
energy of  neutral
atoms. IN=100 A.

FIG 7: Transferred power vs.
neutral atoms energy. IN=100 A.

FIG 8: Transferred power vs.
neutral atoms energy. IN=100 A.
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The configuration considered is basically the same employed
in Ref. [5] and is shown in Fig. 9 . The tokamak chamber is
formed by two electrodes separated by insulators and a coil
provides the magnetic field needed for helicity injection. The
axial current (ITF) produces the vacuum toroidal field. Figs.
10, 11 and 12 present plots of the midplane (z=0) toroidal
current density (jθ), toroidal magnetic field (Bθ) and ratio of
these two quantities (µ0jθ/Bθ) as a function of radius for three
values of c. This parameter is the ratio between the parallel
and perpendicular resistivities (c=η///ηH) and it is changed by

increasing ηH while η// remains fixed. Fig. 11 shows that Bθ

remains almost unchanged for the three values of c and
decays (with r) almost as a vacuum field. The toroidal
current density (Fig. 10) decreases as c is reduced but the shape of the profile remains
basically the same. The ratio µ0jθ/Bθ is a very important quantity in relaxation theory and its
shape changes significantly when c is reduced. The results obtained for c=1 (isotropic
resistivity) do not agree with those of Ref. [5] which, unfortunately, are not correct.
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FIG.9, Configuration considered
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