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Abstract. An advanced asymptotic matching method of ideal and resistive MHD stability analysis in tokamak is

reported. The report explains a solution method of two-dimensional Newcomb equation, dispersion relation for an

unstable ideal MHD mode in tokamak, and a new scheme for solving resistive MHD inner layer equations as an

initial-value problem.

1 Introduction

Since the classical work by Furth-Killeen-Rosenbluth [1], the theoretical framework for the
resistive magnetohydrodynamic (MHD) stability analysis of tokamak has been well established
in terms of the asymptotic matching method. In the present paper we report some innovations
in the MHD stability analysis of tokamak by the asymptotic matching method. The main mo-
tivation of the present work is to get rid of obstacles inherent in a toroidal plasma to which we
apply the asymptotic matching method. First, we present an eigenvalue method for solving the
Newcomb equation [2] in a toroidal plasma. Second, by making good use of the eigenfunction,
we derive the dispersion relation of an unstable ideal MHD mode in a toroidal plasma for the
first time. Finally, we propose a new scheme for solving resistive MHD inner layer equations
numerically in the form of an initial-value problem.

The eigenvalue method not only identifies ideal MHD stable states, but also computes the
outer region matching data of a toroidal mode even close to marginal stability against ideal
MHD perturbations. Furthermore, the eigenvalue method gives a new way to compute the
growth rate of an unstable ideal MHD mode by applying the asymptotic matching method. The
eigenfunction with the minimum eigenvalue serves as the outer ideal MHD solution. Matching
this outer solution with solutions of ideal MHD inner layer equations yields the dispersion
relation of the mode, an equation for the growth rate. It has been impossible to derive such a
dispersion relation since the outer ideal MHD solution was not known so far.

As for the resistive MHD inner layer equations, any numerical methods have not been es-
tablished which solve them as an initial-value problem. The lack of an effective method of the
initial-value problem makes us solve the resistive MHD equations in the whole plasma region
even for the simulation of the inner layer dynamics. The origin of difficulties in the inner layer
problem is that it is not a well-posed initial-value problem for which numerical methods have
been established. We can conquer these difficulties by transforming the original inner layer
problem into a standard initial-value problem. To this end, we adapt the response formalism
developed for the Newcomb equation [3]. This transformation can be shown to be applicable to
the toroidal problem.

2 Eigenvalue method for the Newcomb equation

We have devised an eigenvalue problem [4,5] associated with the Newcomb equation

NY = −λRY. (1)



Here,Y(r) is a vector function made from the Fourier harmonics of the radial displacement,
N the Newcomb operator,R the diagonal multiplication operator whose diagonal elements are
defined such that∝ (n/m − 1/q(r))2 (m, n: poloidal and toroidal mode numbers,q(r): safety
factor). This eigenvalue problem has only discrete eigenvalues without continuous spectra.
Therefore, we can identify a stable state against ideal MHD perturbations as an eigenstate. Next,
we express the2NR (NR: Number of rational surfaces) linear independent global solutions of
the Newcomb equationNY = 0 as

Yq,k(r) = Y0(r) + λ0[~ηq,k(r) + Ω(q,k)Ẑq,k(r)], (2)

Yp,m(r) = ~ηp,m(r) + Λ(p,m)(q,k)Ẑq,k(r) + Ẑp,m(r), (3)

wherep, q = L,R, m = nq(rm), k = nq(rk) (k is fixed in the following),Y0 the eigen-
function for the minimum eigenvalueλ0 , Ẑq,k(r) the local function made from the big solution
around the rational surfacerk, andΩ(q,k), Λ(p,m)(q,k) undetermined constants. The orthogonal
conditions

(RY0, ~ηq,k) = 0, and (RY0, ~ηp,m) = 0,

fix the undetermined constants, which are given by

Ω(q,k) =
(Y0,RY0)

(Y0,N Ẑq,k)
, Λ(p,m)(q,k) = −(Y0,N Ẑp,m)

(Y0,N Ẑq,k)
= − Ω(q,k)

Ω(p,m)

, (4)

where( , ) is the usual inner product of two functions. Then the equations for~ηq,k(r), ~ηp,m(r)
can be solved as boundary value problems even for the marginal stability (λ0 = 0). The coef-
ficient for the small solution at each rational surface extracted from each global solution gives
the matching data for a toroidal mode [5].

A code MARG2D has been developed which solves the 2-D Newcomb equation. This code
allows detailed analysis of toroidal effects on the matching data (∆′) such as those of finiteβ and
of non-circular cross section. It has been used in the∆′ calculation for the analysis of JT-60U
reversed shear discharges [6] and of the neoclassical tearing mode in JT-60U highβp H-mode
discharges [7]. In the next section we inquire into the physical meanings of the constantsΩ(q,k),
Λ(p,m)(q,k) and the eigenvalueλ0. These meanings can be clarified by investigating the relation
betweenλ0 and the growth rate of an ideal MHD mode when the mode is unstable (λ0 < 0).

3 Dispersion relation for ideal MHD modes in tokamak

The solutions given by Eqs.(2) and (3) serve as the outer solution even for the case of
marginal stability. Therefore, we can apply the asymptotic matching method for computing the
growth rate of an unstable ideal MHD mode. In this case the width of the layer around each
rational surface is determined by plasma inertia instead of electrical resistivity in the case of
resistive MHD stability analysis.

Since we are interested in the MHD stability of a toroidal plasma and we make the problem
specific, we assume there exist two rational surfaces. We expand the independent variable
around each rational surfacerj (j = 1, 2) asr − rj = γαjzj, whereγ is the growth rate of the
mode normalized to the poloidal Alfv´en frequency. The constantsαj (j = 1, 2) are positive
and determined by the inner layer equation for the ideal MHD mode. Letµj(νj = −1/2 + µj)
be the Mercier-Suydam index at each rational surfacerj. We consider the case that all of them
are positive and the Mercier stability condition for a local interchange mode are satisfied. A
general solutionY(r) of the Newcomb equation can be expressed as

Y(r) = cL,1YL,1(r) + cR,1YR,1(r) + cL,2YL,2(r) + cR,2YR,2(r), (5)



whereYR,2(r) has the form of Eq.(2) and the others have the form of Eq.(3), andcL,j and
cR,j are four arbitrary constants (j = 1, 2). Sinceγ << 1 (|λ0| << 1), we can assume these
coefficients satisfy

|cL,1| ' |cR,1| ' |cL,2| << |cR,2|. (6)

We asymptotically connectY(r) at each rational surface to the solution of the inner layer
equation. Then we obtain linear equations for the coefficients,cL,j andcR,j . The condition that
the equations have non-trivial solutions yields an equation forγ, the dispersion relation for the
ideal MHD mode. Let us define

∆
′(0)
(j) := ∆R,j + ∆L,j, Γ

′(0)
(j) := ∆R,j − ∆L,j, (7)

where∆p,j (p = L,R) is the matching data of the eigenfunctionY0(r) at each side of the
rational surfacerj . Also let us introduceAj, Bj (j = 1, 2) by

Aj :=
α

2µj

j

2Ω(R,j)

[∆
′(0)
(j) ∆in,e(νj) + Γ

′(0)
(j) ∆in,o(νj)], (8)

and

Bj :=
α

2µj

j

2Ω(L,j)

[∆
′(0)
(j) ∆in,e(νj) − Γ

′(0)
(j) ∆in,o(νj)], (9)

where∆in,p(νj)’s , which are independent on the growth rate, are the inner layer matching data
of the solutions of the ideal MHD inner layer equations. The dispersion relation is expressed by
an equation for the growth rateγ

λ0 = γ2µ1(A1 + B1) + γ2µ2(A2 + B2). (10)

The general dispersion relation where there existsM rational surfaces is easily obtained, which
is given by

λ0 =
M∑

j=1

Fjγ
2µj , Fj = Aj + Bj. (11)

Equation (11) clarifies the relation between the eigenvalueλ0 in Eq.(1) and the physical
growth rateγ. Only Y0(r) is necessary to compute the building blocks for the dispersion
relation. The dispersion relation enables precise stability analysis of an ideal MHD mode around
the marginal stability. Ideal MHD spectral codes such as ERATO can hardly deal with such a
problem.

4 Initial value problem for resistive layer equations

In this section we present a new scheme that numerically solves inner layer equations in
the resistive MHD stability analysis. The new scheme solves the equations as an initial-value
problem. Let us consider the simple inner layer equation in the form of evolution equation

∂t
d2Φ

dz2
= zΞ, ∂tΞ = − d2

dz2
(zΦ) +

d2Ξ

dz2
, (12)

wherez is the radial coordinate stretched around a rational surface,Φ the electrostatic potential,
andΞ the electric field parallel to the equilibrium magnetic field. We impose onΨ, Ξ the tearing
parity condition. The asymptotic conditions atz = ∞ are

Φ(z, t) ∼ φ∞(t)(1 + c/z), Ξ(z, t) ∼ 0. (13)



Herec = 1/∆o is given by the outer region matching data. Equation (13) states that the solution
should be matched at infinity to the ideal MHD solution for which the parallel electric field
vanishes. The inner layer problem is to obtainφ∞(t) whenc is given.

An unknown constantφ∞(t) appears in the asymptotic condition, Eq.(13). We have to
determine this unknown constant at each time so thatΦ(z, t) andΞ(z, t) should satisfy Eq.(13),
which is the origin we meet in the inner layer problem. We apply the response formalism
developed for the Newcomb equation [3]. In applying the response formalism to the inner layer
problem, we employ an implicit finite difference approximation to time in Eq.(12); the special
derivatives are left intact. Thus we obtain

γt

(
d2Φn+1

dz2
− d2Φn

dz2

)
= zΞn+1, γt

(
Ξn+1 − Ξn

)
= − d2

dz2
(zΦn+1) +

d2

dz2
Ξn+1, (14)

whereγt = 1/∆t (∆t: time step). Equation (14) can be rewritten in a vector form

LẐn+1 = (1/φn+1
∞ )H(Zn), Ẑn+1 = (Φ̂n+1, Ξ̂n+1)t, (15)

whereL is the operator corresponding to Eq.(14),

Zn+1 = φn+1
∞ Ẑn+1 = (Φn+1, Ξn+1)t,

and
H(Zn) = γt(−d2Φn/dz2, Ξn)t.

We can now apply the response formalism to Eq.(14). LetY = (Φ2, Ξ2)
t be a vector function

satisfying the parity condition and

Φ2(z) ≡ 1, Ξ2(z) ≡ 0, z → ∞.

By expressing as
Ẑn+1 = Xn+1 + Y, Xn+1 = (Φn+1

1 , Ξn+1
1 )t,

we have
LXn+1 = −LY + (1/φn+1

∞ )H, (16)

and the asymptotic conditions

Φn+1
1 (z) ∼ c/z, Ξn+1

1 (z) → 0, z → ∞. (17)

Next, letX,V be, respectively, the solutions of

LX = −LY, LV = H,

with the condition

X ∼ c0(1/z, 0)t, V ∼ ch(1/z, 0)t, (c0, ch: unknown constants).

By changing the asymptotic condition forV into the equivalent boundary condition

dΦV/dz = −ΦV/z, ΞV = 0,

we can solve the equation forV and obtain the constantch. Similarly, we obtainc0. Finally,
from Xn+1 = X + V/φn+1

∞ we have the relation,

φn+1
∞ = ch/(c − c0), (18)

to be obtained.
Figure 1 shows (a)φ∞(t) and (b)Φ(z) computed by the present method (∆t = 0.04), where

∆o is set to be∆o = 0.2465. The solution evolves with the linear growth rateγ = 0.8, which
coincides with that given by the well known analytic dispersion relation, and shows the typical
structure of the resistive kink mode. These results confirm the validity of the present method.



5 Conclusions

Some innovations in the MHD stability analysis have been reported in the present paper.
The eigenvalue method enables detailed analysis of toroidal effects on the matching data. The
dispersion relation of an unstable ideal MHD mode allows precise analysis of the ideal MHD
stability of a toroidal plasma around the marginal stability. The new scheme for solving the
resistive MHD inner layer equations as an initial-value problem can replace the methods based
on the transcendental dispersion relation of a resistive MHD mode. These innovations resolve
the difficulties inherent in a toroidal mode, and greatly facilitates getting deep insights into
MHD stability of tokamaks.
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Fig. 1 (a) Time dependence ofφ∞(t) and (b) solutionΦ(z) at t = 0.4 for ∆o = 0.2465, ∆t = 0.04.
The computed growth rate ofφ∞ is γ = 0.8, which coincides with that predicted by the dispersion
relation. The solution shows a typical structure of the resistive kink mode.


