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Abstract. The center manifold reduction technique is employed to study the nonlinear evo-
lution of an (m=2, n=1) neoclassical tearing mode and its �rst harmonic, in the presence of
equilibrium sheared ows. A detailed bifurcation diagram of the reduced amplitude equations is
presented delineating the parametric regimes for the occurrence of single saturated island states
and oscillating island solutions.

1. Introduction

Neoclassical tearing modes have attracted a great deal of attention in recent years
due to the constraint they impose on the attainment of the ideal MHD beta limit
in high temperature long pulse tokamak discharges [1]. They arise in the collisionless
regime where the growth rate of the classical tearing mode is signi�cantly enhanced by
the perturbation in the bootstrap current due to the local attening of the pressure
pro�le inside the magnetic island. The basic dynamical behaviour of this mode can
be understood from an extension of the Rutherford theory [2] to include neoclassical
e�ects. Several such analytic studies and some numerical modeling have considerably
advanced our understanding of the evolution of these modes [3{5] but the e�ect of
sheared equilibrium ows on their nonlinear evolution has not been studied. Sheared
ows can occur in a tokamak discharge under a variety of conditions, e.g. due to
unbalanced parallel injection of neutral beams leading to large scale toroidal rotation in
the plasma or poloidal ows arising from turbulence and/or radial electric �elds. They
are known to have a strong inuence on the onset and nonlinear evolution of resistive
tearing modes and it is important to investigate their e�ect on the �nal nonlinear states
of the neoclassical tearing modes. The conventional Rutherford type analysis is diÆcult
to apply in the presence of equilibrium ows since the plasma current density and the
plasma pressure are no longer ux functions. In this paper we have adopted the method
of center manifold reduction to overcome this diÆculty [6] and reduced the resistive
MHD equations to a set of coupled nonlinear amplitude equations which are easier to
analyze. In particular, we examine the time asymptotic states of these equations, which
can describe the �nal nonlinear states of the neoclassical tearing mode, and delineate
the domain of existence of these states and their stability properties through a detailed
bifurcation analysis.

2. Model Equations

We start with an extended model of the resistive MHD equations which includes a boot-
strap current contribution in the Ohm's law and which is evolved self-consistently through
a pressure equation. This set of equations is related to the generalized reduced magneto-
hydrodynamic equations of Kruger et al [3] and in the absence of ows has been used by
Yu and Gunter [5] to numerically study the nonlinear evolution of the neoclassical tearing



mode. The equations are,

@

@t
r2�1 + (~v0 � ~r)r2�1 + (~v1 � ~r)r2(�0 + �1) = ẑ � (~r 0 � ~rjz1)
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is the perturbed bootstrap current and other nota-

tions are standard. g is a smooth function of the minor radius which vanishes at the center
and the plasma edge. We assume a simple slab geometry where x corresponds to the radial
direction and all perturbations are assumed to be periodic in the y and z directions (cor-
responding to the poloidal and toroidal directions) All equilibrium quantities are assumed
to be a function only of x. Equations (1-3) can be written in a more compact form as,
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~R = LR +N(�1;  1; p1); (4)

where R is the column vector ( �1;  1; p1 )T , ~R = ( r2
?�1;  1; p1 )T , L is a linear

operator matrix,
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and N the nonlinear vector, ( �f�1;r
2
?�1g � f 1;r

2
? 1g; �f�1;  1g; f�1; p1g )T .

In the above, the superscript T stands for the transposed quantity, the primes denote
di�erentiation with respect to x (x = 0 corresponds to the mode rational surface) and
fa; bg represents a Poisson bracket.

3. Center Manifold Reduction

We consider an equilibrium situation where the parameters of the magnetic �eld and
ow are such that an m = 2; n = 1 and its �rst harmonic are simultaneously marginally
stable at the q = 2 surface (m and n are the poloidal and toroidal mode numbers). Such a
situation is possible for a variety of model equilibria as has been discussed in the literature
[6{9]. We will examine the nonlinear interaction of these modes by �rst reducing Eq.(4),
using the center manifold technique, to a set of amplitude equations of the form,

_Zr = fr(Z1; �Z1; Z2; �Z2; Z0) (5)

where Z1;2 are the complex amplitudes of the two perturbed modes, bar denotes a complex
conjugate quantity, overdot denotes time derivative and Z0 denotes the distance of the
system parameters from their critical values at marginal equilibrium. Note that _Z0 = 0.
The physical quantities are expanded as,

R(x; y; z; t) =
X
r=1;2

Zr(t)Rr(x)e
ir�� + c:c:+

X
r;s=0;1;2;r�s

Zr(t)Zs(t)Rrs(x) + c:c: + ::: (6)



where the Rr are the linear eigenmodes of the eq.(4) and the functions Rrs and further
higher order ones are chosen orthogonal to Rr. �� = (kyy + kzz) where � is the helical
coordinate and � is the helical mode number corresponding to an m = 2; n = 1 mode.
Close to the marginal state the functions fr can be Taylor expanded in a power series of
the amplitudes,

fr =
X
s=0;1;2

AsrZs + c:c: +
X

s;p=0;1;2;s�p
Aspr ZsZp + c:c:+ ::: (7)

Substituting (6) and (7) in Eq.(4) and matching terms order by order in the amplitudes
Zr up to say third order terms, one can obtain expressions for the various coeÆcients
Asr; A

sp
r etc. In general there are a large number of coeÆcients even with a truncation

to third order and their evaluation is a laborious task. However the constraint imposed
by the symmetry of the system can make many of these coeÆcients vanish. Our model
equations are invariant to translation in y (actually to the helical coordinate in a toroidal
system) so that as discussed in [6, 10] Eq.(5) can be reduced to the following generic form,

_Z1 = (�1 + i!1)Z1 + a1 �Z1Z2 + b1Z1 j Z1 j
2 +c1Z1 j Z2 j

2 (8)

_Z2 = (�2 + i!2)Z2 + a2Z
2
1 + b2Z2 j Z1 j

2 +c2Z2 j Z2 j
2 (9)

The method of deriving the expressions for the coeÆcients is quite standard (see [6] for
instance) and we omit the details. The �nal expressions are listed in the Appendix. These
coeÆcients are complex and their imaginary contributions arise solely due to the presence
of ow. The mathematical origin of this can be traced to a symmetry breaking in the
system of equations - in this case the breaking of reection symmetry by the ow terms.
The real parts of �j provide a measure of the distance of the system parameters from the
marginal state, while the imaginary contributions arise from the Doppler shift contribution
to the natural mode frequencies due to the ow. The frequencies are further modi�ed by
amplitude dependent contributions from the terms proportional to b1 and c2 while the
terms proportional to a1, c1, a2 and b2 provide cross coupling between the modes. Eqs.(8-
9) are still diÆcult to solve analytically. We have therefore examined their equilibrium
states and studied the stability of these states by a detailed numerical local bifurcation
analysis. Our results are presented and discussed in the next section.

4. Bifurcation Analysis and Discussion

Setting Zi = rie
�i eqs. (8 - 9) can be reduced to three equations for the variables r1; r2,

the amplitudes of the modes and � = 2�1 � �2, the relative phase between them. These
equations admit three di�erent equilibrium states, namely, the origin rj = 0 (often called
the \death" state), r1 = 0; r2 6= 0 (a single island state or \semi-death" state) and
r1; r2 6= 0 (a mixed mode state). We have studied the stability of these states in the
functional space of the various coeÆcients of Eqs.(8- 9) and our results are displayed
in the form of phase diagrams in selected parameter regions. The linear stability of the
origin is determined by the eigenvalues �j. In Fig.1(a) we have shown a phase diagram
in the space of Real(�1) and Imag(�1) keeping other coeÆcients constant. Physically
this corresponds to the space of the parametric distance from the marginal state and the
amount of ow induced Doppler frequency shift. The origin loses its stability by a Hopf
bifurcation to yield a single island state (an m = 4; n = 2 island) which for higher values
of Real(�1) goes over to a mixed state. Note that this mixed state is characterized by
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Figure 1.

two regions - the 2 : 1 frequency locked state where _� = 0 and an 'incoherent' region
where the individual modes continue to oscillate independently leading to a modulated
or oscillating island state. The oscillating island states are purely a ow induced state.
This is also seen very clearly in Fig. 1(b) where we have obtained a phase diagram in
terms of the imaginary coeÆcient of one of the nonlinear cross coupling terms, namely
Imag(c1). The incoherent region vanishes for values of Imag(c1) below a critical value.
Fig. 1(c) summarizes our �ndings for the inuence of the real part of the cross coupling
term, Real(b2), on the stability diagram. Note that the incoherent region now has no
direct access from the single island state but is always mediated by the 2:1 locked region.
The transition from the locked region to the incoherent region also shows interesting
'frequency jump' phenomena as shown in Fig.3(d). The time average of _� taken over
several periods shows quantum jumps over intervals of Real(b2) with nearly constant
frequency steps. Similar behaviour is also observed with the variation of Real(c1) in the
incoherent region.

To summarize, a center manifold analysis of the nonlinear reduced generalized MHD equa-
tions (with bootstrap current contributions and equilibrium sheared ows) shows inter-
esting time asymptotic nonlinear states like single saturated magnetic islands, frequency
locked states and oscillating magnetic island states. These solutions could represent possi-
ble saturated states of the neoclassical tearing modes in the presence of sheared ows. For
a more quantitative comparison and to address questions of accessibility a direct numer-
ical solution of the original nonlinear equations (1- 3) is presently in progress.
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Appendix: Expressions for the CoeÆcients

�j=1;2 = Z0

R R �
�Ajc

@L
@Z0

�jc +  Ajc
@L
@Z0

 jc + pAjc
@L
@Z0

pjc

�
dxdy;

a1 =
R R �

�A1c (�f�1c;r
2
?�2cg � f�2c;r

2
?�1cg � f 1c;r

2
? 2cg � f 2c;r

2
? 1cg)

+ A1c (�f�1c;  2cg � f�2c;  1cg) + pA1c (f�1c; p2cg+ f�2c; p1cg)
�
dxdy +O(!):

a2 =
R R �

�A2c (f�1c;r
2
?�1cg+ f 1c;r

2
? 1cg) +  A2cf�1c;  1cg � pA2cf�1c; p1cg

�
dxdy+O(!):

b1 =
R R �

�A1c (f�11;r
2
?�3cg+ f�13;r

2
?�1cg+ f 11;r

2
? 3cg+ f 13;r

2
? 1cg)

+ A1c (f�11;  3cg+ f�13;  1cg) + pA1c (�f�11; p3cg � f�13; p1cg)
�
dxdy;

b2 =
R R �

�A2c (f�12;r
2
?�3cg+ f�23;r

2
?�1cg+ f�13;r

2
?�2cg+ f 12;r

2
? 3cg

+f 13;r
2
? 2cg+ f 23;r

2
? 1cg) +  A2c (f�12;  3cg+ f�23;  1cg+ f�13;  2cg)

+pA2c (�f�12; p3cg � f�23; p1cg � f�13; p2cg)
�
dxdy;

c1 =
R R �

�A1c (f�12;r
2
?�4cg+ f�24;r

2
?�1cg+ f�14;r

2
?�2cg+ f 12;r

2
? 4cg

+f 24;r
2
? 1cg+ f 14;r

2
? 2cg) +  A1c (f�12;  4cg+ f�24;  1cg+ f�14;  2cg)

+pA1c (�f�12; p4cg � f�24; p1cg � f�14; p2cg)
�
dxdy;

c2 =
R R �

�A2c (f�22;r
2
?�4cg+ f�24;r

2
?�2cg+ f 22;r

2
? 4cg+ f 24;r

2
? 2cg)

+ A2c (f�22;  4cg+ f�24;  2cg) + pA2c (�f�22; p4cg � f�24; p2cg)
�
dxdy

The superscript A refers to functions which are the solutions of the adjoint form of eq.(4).


