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Abstract. Using a revised neoclassical theory, the stabil ity of rotation velocities of a colli sional tokamak plasma
near the separatrix is investigated. First, assuming equilibrium, full coupled equations of poloidal and toroidal
velocities are solved by numerical means and depending on the underlying temperature and density profiles
behavior of solutions, such as shocks etc. is studied. Secondly, using a generic quasil inear differential equation
for the toroidal velocity, we investigate its evolution from an initial profile depending on the coefficients of the
equation and give a criterion for the development of a breaking, or a shock front represented by it.

1. Introduction

Within the framework of the revisited neoclassical theory, [1-4] the analysis of poloidal or
toroidal rotation in a collision dominated toroidal plasma with steep gradients is based on the
fluid equations with mass and momentum sources. The revised theory has introduced
important modifications into the parallel momentum equation, when the parameter

( ) '( )*+,-. //001 ψΩν≡Λ exceeds 1/3 [1,3]. It has also been speculated that the poloidal

velocity as derived by the revisited neoclassical theory would not be unique and under certain
conditions allow for bifurcated equilibria, since it is determined there by means of a cubic
equation [3]. Poloidal plasma rotation in toroidal systems is related to various instability
mechanisms. For example, plasma rotation is always accompanied by a radial electric field,
whose origin appears to be complicated due to various competing effects. It is usually
believed that the neoclassical transport should be ambipolar and independent of the radial
electric field. However, this requirement is strictly valid only in an equilibrium plasma, in
which there is no other source or damping of toroidal momentum. Stringer [6] was the first to
notice that the resistive diffusion rate in a toroidal plasma can not only be non-ambipolar, but
can also be negative for some values of the poloidal rotation velocity. Rosenbluth and Taylor
[7], considered the stability of toroidal diffusion using a fluid model and proved that if the
resistivity were the only dissipative mechanism, then even if all plasma deformations were
excluded, there could be no stable poloidal rotation velocity. The unstable poloidal or toroidal
rotations, can also be observed as spontaneous spin-up phenomena in tokamaks. An
interaction between a spontaneous poloidal or toroidal spin-up and the turbulence driven
anomalous transport is also believed to be a likely reason for the L-H mode transition in
tokamaks. A further consequence of an unstable rotation is that, a poloidally asymmetric
particle transport may also render the radial electric field unstable [8].

2. General Formulation of the Problem

Equations for a two-component plasma, describing the continuity of species J with sources234567 89 : , the momentum balance with friction ;<=>?@ AB CC and momentum input DEFGHI AB CC , and

the energy balance with similar terms and energy input DEFGHI JK L are
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The terms S?  on the r.h.s. of (3) denote heating due to energy sources and losses, whereas R?
denote terms relating to collisional energy transfer and frictional heating. The correct forms of
these terms require a kinetic and atomic approach. However, here we shall assume them, as
given functions. Plasma layer just inside the separatrix is colli sional enough to be treated by
these fluid equations including the parallel, perpendicular and gyro stress tensor expressions
given by Braginskii (recently extended and completed by Mikhailovsky and Tsypin [5]). The

radial electric field satisfies Ohm’s law, @BACDEF GCHIJKLIM NOPO ∂=×+ QQ . In the revisited
neoclassical theory [1], a plausible ordering inside the separatrix is introduced by means of a
small parameter µ (∼0.1) as
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where Lψ is the radial gradient scale, ce  and ae are the thermal speed and the gyro radius of the
species J, respectively; υ is the loop voltage and ν e is the collision frequency between like

particles J. Using the magnetic field aligned orthonormal unit vectors ( f ghi jkl m ) in radial,

binormal and parallel directions, and the small parameter µ, the velocity of species J can be
assumed as,

⋅⋅⋅⋅+χψµ≡⋅ ψ nopqql m rstuvwxy ;  z{|}~{}~~� � ������������� ⋅⋅⋅+χψµ+ψµ≡⋅ ββ

�
and

⋅⋅⋅+χψµ+ψµ≡⋅  ����������� � ����������� .     (5)

Assuming that the magnetic field, density, temperature, potential, etc., are independent of the
poloidal angle in dominant order, these are also expanded in perturbation series. For example,
the density and the magnetic field are written as, � � � ������� ������� �� �¡¢

+χψµ+ψ≈χψ  and

£ £ £ ¤¥¦§¨©¥ ª§«¥¦§« ¬­¢¬¡¢
+χψµ+ψ≈χψ , respectively. For a tokamak plasma with circular cross

section, also the use is made of the toroidal unit vectors
¥®¦®¦®§ ¯

ϕϑ °°° . Taking toroidal and

parallel projections of the momentum equation and averaging them over the magnetic flux
surfaces, and imposing the ambipolarity condition, one obtains a pair of coupled nonlinear
equations for the toroidal and poloidal ion velocities in terms of other plasma variables, such
as temperature, density, and electric field [1]. Main results describing the radial transport of
toroidal momentum in a collisional subsonic plasma with steep gradients, are [2,3],
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where, ϑ+= Ø ÙÛÚÜÝÞßàáâ ã
, äåæååååçèæé êëßÞìíî ïÜðÞìàñòóôõö÷ø −

θϕ ∂∂−= , Jù  is radial

polarization current, úúûüüý ý þ ÿ�������� −χ= ; and the parallel heat diffusion coeff. is

χ � 	 =3.9 P 	 /m	 ν 	 . The poloidal rotation driven by the temperature gradient seen inside the
paranthesis on the right hand side of (6) results from the gyro-stress tensor and acts like
another source term, i.e., as a toroidal momentum source or sink, depending on the sign of its



radial gradient. External momentum sources can be direct, such as fast ions provided by the
neutral beam injection, collisions by alpha particles, or indirect and due to particle sources
such as charge exchange with cold recycling neutrals. Important modifications of the toroidal
momentum equation are manifested by its nonlinear coupling to the equation for poloidal
rotation.

Using the ambipolarity condition and the extended forms of the stress tensors in the parallel
momentum equation, one can cancel the time derivative and the source terms. The result in
the lowest order is a nonlinear equation between the radial derivatives of the poloidal and
toroidal plasma velocities:
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The particle source and momentum input terms can also be introduced into (6). Using the

definitions, <A> ≡ @ ≡ ∫ πϑ A @BCDEF
, and @@@ G −≡ , for the surface-averaged and the

poloidal-angle-dependent parts, these terms can be written as,

>< ϕ HIJ KLK
= >ϑε+ϑ++< ϕϕ MN OQPRM S TUVTIMVTIM WJGJT XYZKX[ZKLKLK

  where (ε∼qµ)     (8)

>< ϕ HJ \K
= >ϑε++< ϕϕ MN OQPRM TJGJT \K\K

,

To calculate (8), we need XYZKI
ϕ . According to the revised neoclassical theory [1], we find that

M UUVT]^_`ab^`ac^_`ac defgdhfg ϑµ+ϑµ−≈ϑ ϕϕ  where defdef ijb
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The perturbed density N� � � (r,θ)≡n� � � (r,θ)N� � � (r) in Eq.(8) can be found from the expanded and
averaged forms of Eqs.(1-3), reflecting the symmetry behaviour of magnetic field B� � � (r,θ)
and the sources. For example, from the energy equations, omitting the sources [3]
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We note that in-out or up-down symmetry behaviour of A and C imposed by the magnetic
field, may be further modified by the influence of the sources. Hence, returning to the
averages, we find
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and

>ϑ<µ+><≈>< ϕϕϕ °°° ¢¥¦ §Q¨© ¢¡¢
  (11)

For a numerical solution of (6) and (7) in the equilibrium case, we transform r to a stretched



boundary layer coordinate,.ξ≡(r-a)/Lψ, where a is the radial position of the separatrix, and
assume that temperature and density decrease outwards exponentially. Velocities Uϕ and Uθ

are normalized by µc �  and µc� � , respectively. Such solutions, Uθ, for example, can start from
the neoclassical B.C. values far inside the separatrix and for some B.C., we find that do
display jump discontinuties close to the separatrix. This tendency is related to the algebraic
nonlinearity of these equations. In Fig.1, we present one of the smooth set of solutions.

In order to study the evolution and stability of rotation velocity profiles, we rewrite
P.D.Eq.(6) as an initial value problem. Substituting in Eq.(6) the first radial derivative of Uϕ

from Eq.(7), we obtain for Uϕ a quasilinear differential equation of the first order. Namely, Uϕ

satisfies in  t > 0, -∞ < ξ< 0,
��������������
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and an initial profile Uϕ(0,ζ) = F(ζ). Some of the coefficients κ,λ,α,β, and γ in Eq.(12) depend
on ξ, (and maybe on t), not only through temperature and density profiles but also through

ϑ
�

 and the sources. For simplicity, however, we shall ignore the latter dependencies and treat

Eq.(12) as if uncoupled from the poloidal rotation equation, and assume its coefficients here
as slowly varying, or averaged quantities, i.e., in the first approximation, we treat them as
constants. Defining a modified toroidal velocity W ≡ κUϕ+λ , Eq.(12) becomes	
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where A≡κγ-βλ+αλ � /κ,  B≡β/2-αλ/κ,  C≡α/κ.. Let the initial profile for W be given as,
W(0,ζ)=f(ζ).  For t>0, W can then be found using the method of characteristics, depending on
the value of B� -AC. Namely, if � 2 � ������� �  then
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and the equation for characteristics is
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Depending on the numerical values of the coefficients, A, B, and C, these solutions indicate
either a temporal damping or an enhancement of an initial velocity profile, with or without an
evolution towards a many-valued profile. Evolution of a many valued wave profile is called��� � ��� � � ���

 However, in our case, it must be interpreted as an indication of a jump
discontinuity, or a shock front. For a given initial velocity profile, f(ς), characteristics forming
an envelope is an indication for the forming of a 

��� � ��� � � �
 , or a shock front [9]. We find the

condition for such a discontinuity as,
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If & 2 ' (*),+,- , then the solution of (13) is found as
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where K = arctan[(Cf(ζ)+B)/(AC-B< ) = ] and
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Finally, if M 2 N O*PRQTS , then the solution and the characteristics are found as
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Thus, using above approach, we gain some valuable analytical information about the stability
behaviour of the revised neoclassical toroidal rotation velocity, since the coeff icients A,B, and
C in (13) are functions of the plasma parameters. Whereas, due to its high degree of
nonlinearity, a time dependent analytical analysis of the coupled system (6) and (7) with both
toroidal and poloidal velocity variables seems to be unfeasible.
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