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Abstract. It is shown that a new cutoff at small scattering angle should be introduced for
constant relative velocity meanwhile a new cutoff on the velocity increment should be
introduced for varied relative velocity based on the effective collision conditions. It is found
that the Coulomb logarithm should be reduced to half of the well-known result.
Consequently, the Fokker-Planck coefficients are modified and applicable to both weakly and
moderately coupled plasmas. The relaxation times increase and the cross-field electrical
resistivity, electron diffusion and ion thermal conductivity are reduced to half level for
Maxwellian scatters. The non-Maxwellian effect can furthermore modify the Fokker-Planck
coefficients, increase the relaxation times and reduce the cross-field transport coefficients.

1. Introduction

Recently, tokamak experiments have shown that the measured cross-field diffusion and
therma conductivity can be well below the neoclassica levels in the core of reversed
magnetic shear (RMS) plasmas [1]. It is important to restudy Coulomb collisions since they
are fundamental for plasma transport. Meanwhile, the new derivation indicates that the
Coulomb logarithm InA has a precise significance for charged-particle stopping power in
inertial confinement fusion plasmas. The conventional Fokker-Planck (F-P) equation should
be modified to include the non-dominant term, which is applicable to moderately coupled
plasmas [2]. The conventional theory uses the scattering angle @ instead of momentum
transfer mAv to describe the Coulomb collisions in a plasma. Recently, the difference
between small-@and small- mAv collisions of inverse-square force was clarified [3].

The Coulomb collision between a test particle (with m, v) and a field particle (with m.,
V¢ ) isequivalent to the interaction of a particle of reduced mass ¢ = mm. /(m+m.) witha

fixed scattering center asin Fig. 1. The momentum transfer mAv , the impact parameter b and
the Rutherford cross-section o, depend on the relative velocity g, and & as follows:

mAV = 2ugsin(6/2), Q)
b=(Zz.€’ /4, ug?)cot(8/2), 2)
and o, =(2z.¢ 18,19 ) ot (612). ?)

In this paper, it is indicated that the cutoff at &, introduced in the customary approach is
questionable because the interaction distance r between the test and field particles was
replaced by b. A new cutoff at 8,;, should be introduced for constant g. It is shown that

mAv can properly describe the Coulomb collisions in plasma rather than 8because mAv is



determined by both @ and g that can vary
from zero to infinity in a plasma. A new
cutoff on Av can be introduced based on
the Debye shielding theory and the
effective collison conditions, which are
valid for varied g. These results should be
applicable to the fundamental theory of
plasma kinetics. For example, F-P
coefficients, the relaxation times and the
U cross-field transport coefficients in a
plasma should be modified for Maxwellian
and non-Maxwellian scatters.

Fig. 1. The geometrical variables for the
scattering process in the center-of-mass
coordinates.

2. A new cutoff at small scattering angle

In the customary approaches, Av was replaced by 8to describe the Coulomb collisionsin
a plasma. Such replacement might be valid only if g is a constant. For the case of constant g,
it is easy to obtain from Eq. (2) the relation between b and fas follows:

sin(0/2) = b, /4/b? +b? (4)

where b, =ZZ_€’ | 4me,ug?, and b=Db,cot(8/2). In the previous theory, 8. is usualy
determined by setting b =A, and g=v,, sothat sing_ /2=b,/(A2 +b2)">=A_/A,
for A, >>Db,, where A, isthe Debye length, A, Landau length and v, thermal velocity of
the field particle. Then, it was shown that the cutoff is made at 6,,,/2=A, /A, and the
Coulomb logarithm is —Insin(@,,,/2) =InA [4-7], where A=A /A, is the Coulomb
constant. Such a method is questionable because b # r . Substituting b, = (A, Sind)/2 into
Eqg. (4), | would have sin(@_,./2)=b, /[(A, sin8,,.)?/4+bZ]"?. After simple agebraic
calculation, | obtain sn@_ . /2=8 . /12=(b,/A,)"? . Hence, the Coulomb logarithm
should be modified as —Insin(@... /2) = InAY? = (1/2)InA.

min

3. A new cutoff on small velocity increment

In plasma physics, v can vary from zero to infinity so that g also varies from zero to
infinity even if the test particle velocity v is a constant. Obviously, Av, b, and o, cannot be

determined by @aone if g varies. From Egs. (1) - (3), it is easy to observe that the cutoff at
6 =40, isunsuitable. It unfairly excludes the strong collisions with quite large g because
small 8cannot ensurethat Av is small. Moreover, when g approaches zero, it cannot exclude
the weak collisions because b and o are still divergent. Hence, the cutoff on small 8 alone
cannot fulfill Debye shielding theory.

Actualy, it is aso improper to use b instead of Av to measure the collision intensity. For
example, according to the previous theories, small b implies close collisions. However, when



b =0, two ions cannot get closer than A, if their g is very small. It is easy to observe this
point if combineing Egs. (1) and (2) by eliminating g to obtain

b/sing =(z2z.€” | 4rE,)(2ul m*Av?). (5)

Obvioudly, itis b/sin@ rather than b that can replace Av to describe the Coulomb collisions
inaplasmasince b/sin@ can be completely determined by Av.

First, | consider the effective collision condition from the viewpoint of energy. Assuming
that the collisions are effective only if the kinetic energy associated with the component of g
along the interaction direction is greater than the Coulomb potential energy, namely,

(L/2)ug” cos® x = ZZ.€” | 4re, A, due to the Debye shielding, where y is the angle between
g and the interaction direction. For ssimplicity, | may use x, to replace x, where yx. isthe
specia value of y at the moment of closest distance r,,, and multiply by an undetermined
factor a to adjust it. By using the relation x., =(77—6)/2 and Eq. (1), it is easy to obtain
AV? > (ZZ.€* | 4re,)(8ula’m?A,) . Thus, the cutoff on Av should be taken as

Av . =(8uzZ. e |4 ,a’m’A, )" 2. (6)

Secondly, | consider the effective collision condition from the viewpoint of interaction
distance. | assume that the Coulomb collisions are effective only if r =b/sin y <A, . For
simplicity, | may use b/siné to replace b/sin y, which is reasonable according to Eg. (5),
and have to multiply by an undetermined factor S to adjust it. By using Eq. (4), | would have
AV? = (ZZ.€” 1 47r,)(28ul m?A,) . Therefore, the cutoff on Av should be taken as

Av . = (2puzZZ.e* | dre,m? A, )"? .
that is consistent with the result of Eq. (6).

It is interesting to rewrite Eq. (3) as g, = (ZZ.€*/4me,)? (4u* I m*Av*), which can be
completely determined by Av. This confirmsthat Av isreally a sole variable to measure the
collision intensity. o, isvery large for small Av and approachesto o when Av — 0. Thus, |

have to introduce a cutoff at Av = Av ;.. Using Egs. (6)-(7), and letting a = V2 and B=2,1
would obtain the cross section g, = A, /4 for the most distant collision. By using 8and Av
as independent variables instead of 6 and g, | obtain the total cross section
o'= ZHL”aRsinédé’ = 471(ZZ . €” | 4re,)? (4u” I m*Av?) . Substituting Egs. (6) and (7) into
this expression, | would have ¢, = 774, for the most distant collision, which is consistent
with the Debye shidding theory, and Av, =(4uzZZ.€"/4mE,m°A,)"? so that
Usmin = AV /aV,, =A™, where a =24/ m. With the help of this result, the divergent part
of the Fokker-Planck integral [3] becomes

I;r(n +1, uﬁ)ugzdug = ni2InA\"2, 8)



Obviously, the Coulomb logarithm is InAY? which is the half of the usua InA. This
conclusion is consistent with the result obtained in Sec. 2.

4. Modification for Maxwellian and non-M axwellian scatters

All F-P coefficients can be obtained for Maxwellian scatters. For example, the first two-
order F-P coefficients are as follows:

< Qv >=-4wav, INN"*G(u), 9)
<Av; >=2w(avy,)*[(INAY2 /u+u)G(u) - (3/ 4)u?y* (5/2,u®)] (10)
<AVE, >=<AVZ, >= < Av; > —2w(av,, )’ InAY?o(u)/u]/ 2, (11)
and < Av? >=<AV] >+ <AVZ >+ <AvZ, >= 2w(av,, )’ INAY?d(u) /u (12)

where u=v/v,, w=n.v,TA>, ®(u) is the error function, G(u) Chandrasekhar function,
and y* (t,x) the analytic incomplete gamma function. The dynamic friction coefficient and
the dominant part of the diffusion tensor reduce to half. The condition for non-dominant part
exceeding dominant part becomes v® >vZ2InA"? instead of v®>vZInA. Hence, the
definition for weakly, moderately and strongly coupled plasmas should be modified.

In other hand, the relaxation times are doubled due to InA reducing to InAY? if only the
dominant part of the F-P coefficients is taken into account. The slowing-down time,
deflection time and energy-exchange time are respectively

T =-u/(0u/at) =ul[4aav’ INAY>G(u)], (13)
T, =-u”/(0u?/at) = u® {w(av,)? INA"*[D(u) - G(u)]}, (14)
T, =-w/(ow/ot) = u®/[8w(av,,)* INA"?D(u)]. (15)

Consequently, the cross-field transport coefficients in a plasma should be reduced to half of
the convention values. For example, the cross-field electrical resistivity, electron diffusion
and ion thermal conductivity are reduced respectively to

o, =m,/ne’r, = 2rm,e’ InA\"? | 3(kT,)*?, (16)
D¢ = KT, /mw?r, = 4,/2rm,ne’c? InAY2 /3B2(KT,)"?, (17)
k' =2nkT /ma?t, =8,/mm n%e?c? InAY2 /3B2(KT,)"2. (18)

For some special form of non-Maxwellian scatters, | can derive all F-P coefficients as
well. For example, if the field particle has a drifting beam in the tail of a Maxwellian

distribution, namely, f(v) = (w3) ¥ *{exp(-v®/v2) +bexp[-c*(v/v,, —uy)’]}, the
coefficient of dynamic friction is reduced to:



<Av, >=-2wav, InN{G(u) +bG[c(u—uy)]} . (29

Hence, the relaxation times are longer than in the case of Maxwellian scatters. For instant, the
slowing-down time becomes

o =—u/(0u/at) =u/l{4wav’ INA"?[G(u) +bG[c(u—u,)]} . (20)

The cross-field electrical resistivity, electron diffusion and ion thermal conductivity are
furthermore reduced due to the non-Maxwellian effect.

5. Conclusion

It is found that a new cutoff at &, should be introduced for constant relative velocity
because the interaction distance cannot be replaced by the impact parameter. It is shown that
mAv can properly describe the Coulomb collisions in a plasmarather than 8 because mAv is
determined by both @ and g that can vary from zero to infinity in a plasma. A new cutoff on
Av should be introduced for varied g because collisions are effective only if the kinetic
energy is greater than the Coulomb potential energy, and/or the interaction distance is shorter
than the Debye length. In both cases, it is found that the Coulomb logarithm should be
reduced to half the level of conventional plasma kinetic theory. Consequently, Fokker-Planck
coefficients are modified and applicable to both weakly and moderately coupled plasmas.
The relaxation times increase and the cross-field electrical resistivity, electron diffusion and
ion thermal conductivity are reduced to half level for Maxwellian scatters. The drifting beam
of electrons in the tail of the Maxwellian distribution can furthermore modify the Fokker-
Planck coefficients, increase the relaxation times and reduce the cross-field transport
coefficients. The reduction of the cross-field transport might be useful for explaining why the
measured cross-field diffusion and thermal conductivity well below the neoclassical level in
the core of RMS plasmas The reduction of the Coulomb logarithm will modify charged-
particle stopping power in inertial confinement fusion plasmas. The conventional Fokker-
Planck equation is modified to include the non-dominant term, which is applicable to
moderately coupled plasmas.
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