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Abstract: The theory of low frequency instabilities in axisymmetric toroidal plasmas is presented from the point
of view of the two-fluids equations, assuming the standard drift wave ordering. Attention is focused on the limit
in which neighboring rational surfaces are sufficiently far apart that mode overlapping is non-existent. Owing to
field line bending, poloidal side-bands m±1,... coexist with the primary mode m, enhancing noticeably the role of
the parallel ion dynamics. The electron and ion branches are investigated accurately under those conditions. It is
found that the radial widths of the eigenmodes increase with respect to the slab values; the shear damping rate of
the electron branch, respectively the growth rate of the ion branch increases correspondingly. Other interesting
results are obtained concerning the frequency, the growth rate and the poloidal variation of the amplitude of the
ion mode fluctuations. Those explain the origin of  internal transport barriers; they also suggest ways of
interpreting fluctuations asymmetries observed in  tokamaks and (when collisions are included) the Radiative
Improved confinement mode.

1. Introduction

We have derived, in the framework of the two-fluids theory, two-dimensional partial
differential equations which describe the dynamics of low frequency micro-instabilities
elongated along the magnetic field lines; our derivation is free of assumptions regarding the
ballooning character of the modes and the stress tensor; ion collisions have furthermore been
taken systematically into account. The two-fluids theory is attractive because of its immediate
physical content, but it fails to include wave-particle resonant interactions and the trapped
particles responses; those can be taken into account via a kinetic extension once the
characteristic target instability parameters have been identified by the two-fluids results.

In tokamaks, a crucial parameter in the 2D description of low frequency instabilities is the
ratio of the radial width (w) of neighboring eigenmodes (with identical toroidal mode
numbers) to the distance (∆) between the rational surfaces about which they are respectively
localized. Strong overlap occurs if w/∆»1; in that case, new sets of eigenfunctions may be
built from linear combinations of the isolated eigenmodes, as proposed by Taylor [1]. Poloidal
coupling, which primarily occurs through the magnetic field radial and poloidal gradients,
plays a decisive role in the linear stability properties: magnetic shear damping of electron drift
waves for example is suppressed for a proper phasing of the isolated eigenmodes.

The inhomogeneity of the magnetic field plays also an important role in the opposite limit
w/∆«1 as the parallel mode number of the side-bands (=1/qR) is larger than that of the
primary mode; as a result, the role of the parallel ion dynamics is noticeably enhanced and the
radial width and complex frequency are altered significantly. We concentrate here our efforts
on this limiting case, which is particularly appropriate to internal transport barriers associated
with weak magnetic shear. For the purpose of the analytical theory, the parameter |q/ŝ| Nε
will be assumed small (εN=LN/R is the ratio of the density length-scale to the major radius).



Our main theoretical results are as follows. The frequency of the ion branch (measured in the
ExB rotating frame), ω'=ω−ωExB , is small compared to the ion diamagnetic frequency (*

iω )
and has the opposite sign [Eq.(23)]. The growth rate is proportional to the absolute value of
the magnetic shear sˆ  [Eq.(22)]. The normalized density fluctuation is small compared to the
normalized ion temperature fluctuation and exhibits an important poloidal variation [Eq.(27)].
The frequency and the radial oscillation and decay lengths are larger in the actual toroidal
geometry than in the slab model [Eqs.(23), (21a), (21b) and (24)]; the growth rates are
identical [Eq.(22)]. Ion collisions can stabilize the ion branch, especially at high mode
numbers [Eq.(28)], but have a negligible effect on the electron branch. The electron branch
frequency ω' is about ωe

*, but dispersive effects are enhanced by the geometry [Eq.(11)]. The
radial oscillation scale of the eigenmodes and their damping rate (the latter proportional to

|ŝ| ) are larger in the torus than in the slab by fractional powers of (1+2q2) [Eqs.(13) and (12);
the latter result is opposite to that obtained in the strong overlap limit [1]; actually, the
balloning formalism cannot grasp the toroidal effects obtained here because of restrictive
assumptions]. The experimental relevance of those results is discussed in Section 5.

2. Methodology

The conventional drift wave ordering defined by
1~qRk,1~ak,~ ||i

*
j ⊥ωω ,    (1a)

1«~L/a~/ ii
*
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is assumed, together with
ci / ce ~ (me / mi )

1/2 ~ µ    (1c)
(j is the species index, ai=ci/Ωi, ci and Ωi are the ion Larmor radius, thermal velocity and gyro-
frequency, respectively). Within this framework, the bulk (in opposition to trapped, not
considered here) electrons behave adiabatically (as ω<<ce/qR), i.e.,
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We consider fluctuations of the form  [2]
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where ψ, χ and ϕ are the standard flux, poloidal and toroidal coordinates [3],
R/JB)d/d(),( B ϕ=χϕ=χψν    (4a)

is the pitch angle of the field lines, J the Jacobian of the transformation r→ (Ψ, χ, ϕ), " , m
are the toroidal and reference poloidal mode numbers [~µ-1 according to (1a) and (1b)]. The
rational magnetic surfaces are defined by
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The functions );,(n̂ m,m,m, """
ψχψ−ψ  describe the radial structure of the modes in the

neighbourhood of the rational surfaces and, owing to the inhomogeneities of the equilibrium,
residual poloidal and radial variations; the former plays hereafter an important role. The
representation (3) is compatible with the periodicity and the long parallel wavelengths
requirements [2]. The summations may be dropped here since
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→ 0, as w/∆<<1. 2D equations are then

obtained for the ion density, temperature and parallel flow velocity.



In the following, we consider large aspect ratio tokamaks with circular cross-sections;
replacing χ by the usual poloidal angle θ, we have B=B0(1-ε cos θ), where ε=r/R0, r is the
minor radius of the nested tori and θ=0 corresponds to the outer equatorial plane. The ion
magnetic drift frequency operator can be written as
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whereas
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The residual poloidal dependence of m,,in̂
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is described by Fourier series, e.g.,
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so that the parallel differential operator )],(),([i m, χψν−χψν+∂χ "
"  leads to the algebraic

expressions )xkŝp(i θ+ , where qlndrŝ r= , kθ=m/r and m,rrx
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1xkŝ <<θ ; the index p labels the side-bands. Assuming 1q/sN <<ε �
, the infinite

system of ordinary differential equations can be truncated to p=0 and p=±1. Finally, the range
of poloidal mode numbers for which toroidal and slab terms compete has been identified in
order that the most complete equations are obtained (maximum complexity ordering).

3. Results for the electron drift branch

The electron drift branch is characterized by ω’~ ω* and ∆⊥«1, where ∆⊥=ai
2(∂x

2+kθ
2) is the

normalized Laplacian. The radial eigenvalue equation is
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where ηi=LNi/LTi, τe=Te/Ti and as
2=τeai

2. Equation (8), already obtained in [4], differs from the
slab equation [5]  by the (neoclassical) factor (1+2q2). The solutions are
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(The Hn ’s are Hermite polynomials).Damping of electron drift waves by transiting ions in a
sheared magnetic field is a consequence of the wave energy being radiated away from the
rational surface; as Eq.(12) shows, shear damping is larger in a toroidal plasma than predicted
by the slab model. The scale of the radial oscillation is also larger:

2/1
N

4/12
s

2/1
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The range of poloidal mode numbers over which both conditions of negligible overlap and
negligible wave-particle resonant interaction are fulfilled is given by
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The ratio of the amplitudes of the side-bands 1i )n̂( ±  and 1i )t̂( ±  to the p=0 components is of

order 2/1
N )q/ŝ(ε  if kθas is in the range (14). We note finally that
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4. Results for the ion drift branch

The ion drift branch is characterized by ω’«ω* and ∆⊥«1. The radial eigenvalue is
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[We note that, also in the slab (D=1), Eq.(17a) differs from the equation obtained by Coppi et
al. [6], who failed to take finite Larmor radius corrections to the perpendicular components of
the fluctuation velocity systematically into account; the latter are essential in the ion energy
equation. The effect of collisions will be neglected at first. The solutions of Eq.(17a) are then
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satisfying Re Kt>0; the complex eigenvalues ω’ are given by
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here, D0 is given by Eq.(17b) with νi=0.

4.1 The Small Magnetic Shear Limit

If ŝ<<1, the condition of negligible overlap can be satisfied either when kθ
2ai

2< Κt or when
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tKeℜ  is therefore positive corresponding to bounded eigenmodes (ηi>2/3 is required for

bounded unstable solutions). Further, the growth / the damping rates of the modes are
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is again larger than in the corresponding slab model (factor 2/1
0D ).

One can show that the range of poloidal mode numbers over which both conditions of
negligible overlap  and negligible wave particle resonant interaction are fulfilled is given by
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The toroidal eigenmodes are given by series similar to Eq.(7). Of particular interest is the
expression of the density fluctuation:
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where ωt,i=ci/qR and the operator ωB,i is defined in (5); the amplitude of the density side-bands

1i )n̂( ±  are typically larger than the amplitude of the main component 0i )n̂(  by 3/1
N )q/ŝ( −ε ,

whereas 3/1
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4.2 The Role of Collisions

In the limit kθ
2ai

2 > Κt, ion collisions tend to stabilize the ion branch at the rate
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5. Summary and Experimental Relevance

5.1 Internal Transport Barrier

The growth rate of the ion drift mode [Eq.(22)] is proportional to the absolute value of the
magnetic shear parameter. This result brings a simple explanation to the formation of
internal transport barriers with minimum q profiles . The assumption of weak overlap is
particularly appropriate here (a contrario, the opposite limit considered in most other works is
not valid). Since the growth rate is furthermore independent of |ak| iθ , Landau damping (not

considered here) is expected to suppress the instability at long wavelenghts.

5.2  Radiative Improved Mode

At the other end of the spectrum, i.e. for finite |ak| iθ  values, ion collisions may stabilize the

system if νi is large enough, as Eq.(28) shows. Shrinking of the instability range owing to
both Landau and collisional damping may explain the reduction of
conductive/convective anomalous transport at the edge of the high density Radiative
Improved confinement mode discharges (the above analysis requiring  both 1«ŝ  and
negligible mode overlap is however not directly applicable).

5.3 Asymmetry of the fluctuations

The amplitude of the ion drift mode density fluctuations are characterized by important
poloidal asymmetries, cf. Eq.(27). Under the above assumptions ( 2

i
2

t akK θ<  and low shear),

two maxima arise near the equatorial plane, respectively on the low and on the high field
sides. Those results are relevant to observations in the core of TEXT-U. The ion
temperature fluctuations are larger than the density fluctuations and only weakly θ dependent.
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