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Abstract

The Stellarator Theory Division at the Greifswald Branch has been concentrating on widening the scope of theo-
retical work related to W7-X. Some of such areas are the quality of finite- magnetic surfaces, energetic-particle-
driven Alfvén eigenmode, resistively driven drift and ion-temperature-gradient-driven instabilities. New results
pertaining to these issues are: i) MHD GAEsin W7-X-type equilibriaare discovered and thefirst 3d drift-kinetic
formulation of interaction with energetic particlesis developed as nonlinear eigenval ue problem anaytically and
computationally; ii) for thefirst time, mode structuresof globally cal cul ated resistivedrift instabilitieswith pol oi dal
mode numbers of O(10%) and exhibiting the relative importance of toroidal vs. helical coupling are obtained in a
toroidal stellarator; iii) for thefirst time, nonlinear saturation levels of kinetic ITG modes are obtained with energy
conservation in aB-pinch, iv) fixed-boundary-PIESW7-X-typehigh- equilibria- well converged on an NEC-SX5
- show even 5/5 idlandsto be very thin.

1. Global Ideal MHD for 3-D Equilibria

The CAS3D 3-d ideal MHD stability code [1] has been applied to investigating the stable part
of theideal MHD spectrum, in particular to understanding gap formation and the structure of
global, stable modes, as they are possible candidates for destabilization by a-particles.

Using CAS3D the standard tokamak pi cture with geometry-induced gaps and modes, e.g. TAES
and EAEs, and 3-induced gaps and modes has been extended by the stellarator-type gaps and

100

80 r

60

R —— ,(\10"11)

frequency [kHz]

40

20

0

Il 1 I T
0.0 0.1 0.2 0.3 0.4 0.5
effective minor radius [m]

Figurel1: Ideal continuousMHD spectrum(left frame) for the W7-X standard high-1 case (five field peri-
ods, (B) = 0.05, 1 > 1). Lines represent the continua (solid: Alfvén, dotted: slow). The prominent spec-
tral gaps are indicated by shading. The BAEs (bottom right frame for the dominant harmonics of their
normal displacements versus effective minor radius) occur at 16.1 kHz and 16.8 kHz, helicity-induced
global modes (middleright) at 31 kHz (even) and 33 kHz (odd); an anti-Sturmian set of TAES (top right)
around 60 kHz. CAS3D code, N = 1 mode family, 288 radial mesh points, 15 perturbation harmonics,
adiabaticindex y = 5/3 (=0 for middleright frame). Normalization: B = 2.5T,ny = 3-10°°m~3,



modes originating from purely stellarator-type couplings, e.g. helicity and mirror fields giving
riseto HAEs and MAEs. Together with the 3-d analog of the cylindrical GAE [2] for which the
frequency appears just below the corresponding Alfvén continuum in case of sufficiently low
shear, thestellarator, in principle, leadsto agreater variety of global, stable modes. Inthe W7-X
high-1 high-mirror variant [3] GAES were not detected, since the corresponding continuum ex-
tremaare not sufficiently flat. For the frequency ranges and locations of the 3-, toroidicity- and
helicity-induced gaps and modes see Fig. 1.

2. Fast Particle Effects

The gap eigenmodes of the Alfvén spectrum may be destabilized by energetic particles. To ac-
count for kinetic effects alinearized drift kinetic equation has been solved in three-dimensional
geometry with both reflected and passing particles [4]. Theradial particle drifts away from the
flux surface have been neglected. Therefore, aflux surface is aconstant of the particle motion
and approximates the drift surface which is given by the constancy of the second adiabatic in-
variant. Thisapproximationisin particular suitable in the W7-X case where the radia particle
drift has been minimized [5]. For the orbit integration a propagator technique [6] is used allow-
ing the expansion around bounce averaged toroidal and poloidal drifts, which neglects side band
coupling introduced by the spatial dependence of the particle drift frequencies.

From the force balance equation

with MHD-like perturbations
BU—Fx(E, «xB), AV-F xB EV-_jiwdD, ¢=¢gY=0

ageneralized energy integral can be obtained. Here, the fluid compression term of ideal MHD
isreplaced by akinetic term for each particle species which contains the resonant interaction of
the mode with particle drift or bounce frequencies, resp.
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with the bounce-averaged drift frequencies (wy), the reflection or transition frequency w, the
diamagnetic drift w*, F(s, , u) thedistribution function, L(Y) the perturbed particle Lagrangian,
o thedirection of particle motion, M the species mass and Sa function resulting from the prop-
agator [4]. Obvioudy, the according eigenvalue problem is nonlinear and involves a fivefold
integration over phase space for the calculation of the matrix elements.



3. Global Resistive Drift Modesin General Geometry

Contrary to former studiesof drift waves[7] - [11], which always employed the ball ooning trans-
formation to reduce the three-dimensional equations to an eigenvalue problem along the field
line, one can choose the more difficult global approach, i.e. to solve the three-dimensional
eigenvalue probleminsideatoroidal shell without any approximationsregarding the mode struc-
ture. Since here effects of the equilibrium geometry are the main aim, one can start with ssimpli-
fied equationsincluding just as much physics as necessary for obtaining instability but making
no approximations regarding the geometry and allow for general three-dimensiona equilibria
Using the linearized Braginskii-equationswith the temperature equations neglected, the fol | ow-
ing assumptionsare utilized: lonsaretreated asacold fluid, resistivity isincluded in the parallel
components and perturbations are regarded as electrostatic. This gives
~ 2 ~
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(JO— —|— IA(LC—I— Ld) — IA Lcn—l— iC DD”(CD— —) + — - DD”— =0
for the density and potential perturbatlon. The dimens onlws quantities A, C describe inertia
length and resistivity, the operators L, Ly represent curvature and diamagnetic velocity. Nor-
mally the last term on the left-hand sides was neglected (i.e. neglect of sound wave effects);
including these terms in the cal cul ations shows that thisisindeed justified.
To allow for general three-dimensional equilibria—which e.g. can be calculated by the VMEC
code —all the operators are expressed in magnetic (Boozer) coordinates (s, 9,9).
For solving the equations the perturbations are Fourier decomposed in the angle-like variables,
radially finite differences of second order are used. In order to make possible the treatment of
high mode numbers a phase-factor transformation (Mp, Np) is introduced. The resulting gen-
eralized complex eigenvalue problem with non-hermitian matrices is solved by an Implicitly
Restarted Arnoldi Method.
To check the code a simple analytical axialy symmetric model was employed with variousro-
tational transformstypical of atokamak or a stellarator. The eigenvalues (for different phase
factors) calculated with the global code were in good agreement with those obtained by using
a simple ballooning approach. For positivel’ it is possible to find modes with the global code
which could not be found by the ballooning approach. In general, increasing | or changing I’
from negative to positive has led to a considerable decrease in the growthrate.
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Figure 2: Real part of the eigenfunction for Mp = 4500 (l€eft) and radially averaged mode-amplitude
(right). Im(w) = 1.4. The insert shows the m=0 component.



Results obtained with the global code for VMEC generated tokamak and stellarator equilibria
are presented in the Figures. Figure 2 displaystheresult of acalculation for acircular tokamak
withA= 10, =0and(s) = 0.333— 0.333(s— 0.9). Theeigenfunction is composed of peaks
centered around the respective resonant surface. The averaged mode amplitude shows a strong
ballooning effect at the low field side (9 = 0) of the torus. The same tokamak with a W7-X-
liket(s) = 0.95+ 0.35(s— 0.9) givesatotaly different mode structure (Fig.3) where the mode
maximum need not be |located at the low field region.
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Figure 3: Real part of the eigenfunction for Mp = 5000 (left) and radially averaged mode-amplitude
(right). Im(w) = 0.55.

Figure 4 displays the mode structure on a flux surface (s = 0.9) for Mp = 7000 calculated for
astraight /=2-stellarator with one field period and ellipticity d = 0.3. The mode is essentially
dab like (because of the small shear) with small helical components. For very high Mp (e.g.
2-10% the mode maximum shifts from the low to the high field region.

The eigenmode (Mp = 5000) for atoroidal (=2-stellarator with five field periods, & = 0.3 and
A= 10isshowninFig.5. The pronounced maximum at 3 =0 iscaused by the toroidal coupling;
the smaller variation results from the helical coupling.
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Figure4: |®(s=0.9)| in real space. Figure 5: |®(s=0.9)| in magnetic coordinates.
Im(w) = 0.67. Red correspondsto a Im(w) = 1.3.
maxi mum, orange to a minimum.

These results show that the developed code can be used to investigate resistive drift modesin
three-dimensional equilibria. The next step will be to search for such modesin W7-X with its

very different coupling structure.



4. Energy Conservation for a Nonlinear Simulation Codefor ITG Modes

ITG instabilities are now commonly held responsible for turbulence giving rise to anomalous
ion heat transport in the core of tokamaks. 1 TG turbulence could become the dominant transport
mechanism of W7-X as collisional transport has been optimized in this stellarator. Thereforea
nonlinear 3D global gyrokinetic simulation code for W7-X has to be developed. First results
with linear simulations of 3D magnetic configurations have already been achieved [12] while
nonlinear ssimulations with energy conserving properties are still under development.

The global nonlinear smulations are very demanding with respect to the numerical methods
and the computational effort. Although the underlying set of gyrokinetic equations is energy-
conserving, energy conservation is usualy lost in the saturation phase [13].

In afirst step, we reduce the problem to a geometrically simple configuration: the 6-pinch; in
the smplest case with 3 = 0: B = Bge;.

For this purpose we adapted the nonlinear particle-in-cell (PIC) code ORB [13] to handle a
plasma in the B-pinch configuration. The adapted ORB code, which will be stated as TORB
further on, is able to make a global 3D simulation of the nonlinear time evolution of the ITG
turbulence.

The gyrokinetic model
The nonlinear gyrokinetic equations as derived in [14] are used to calculate the time evolution
of the ion guiding center distribution function (R, v, fi):
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The equations of motionfor the perturbed guiding center trajectoriesof theionsin reduced phase
space (R, vy, {1 here) are:
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where g; and my are the ion charge and mass.

The quasi-neutrality equation to calculate the electrostatic potential @to O((k, p;)?) is derived
from [14] by assuming Boltzmann electrons and quasi-neutrality

eno(r)
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with the gyro-averaged ion density (n;), the background density of the Maxwellian distribution
function ny, the electron temperature Te, the average of the potential over afield line @ and the
cyclotron frequency Q; = g;/mB. In the current version of the TORB code, the subtraction of
the potential average @is not implemented yet. Further, we define the kinetic energy Eyi, and
the electrostatic energy Egieg as:

v2 .
Ekind:ef/mi (ﬁB+ %) fdRdv  and Efielddg% ((ni) — o) pdx

It can be shown that the total energy Eiot = Eyin + Efieq is conserved for the set of equations
used here.
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Figure 6: Left: Averaged radial heat flux over time. Right: Absolute values of the changesin kinetic
energy (dashed line) and electrostatic field energy (solid line) over time.

Numerical methods

The TORB code uses a &f [13] method for the discretization of theion guiding center distribu-
tion function f so that tracer resolution is not wasted to represent the background Maxwellian
distributionfunction fo anditsgradient. Finite elementsarechosen to represent both theelectro-
static field @ and the tracer shape (cloud-in-cell) which already hasbeen successful inlinear ITG
smulations [15]. The whole gyro-averaging process for the charge-assignment and the electric
field E [16] isnot limited by any k, p; expansion. It isonly limited by the resolution of the grid
and its finite element basis. It has a positive numerical effect because it acts as a k| p; filter,
hence smoothing higher fluctuations.

The charge-assignment has the principal disadvantage to produce noise dueto statistical error.
For that reason, after charge-assignment a Fourier-filter is applied to diminish the high mode
numberson the grid. The noiseis strongly influenced by the number of tracers per grid cell and
by theinitial distribution of the tracers in reduced phase space. To minimize the statistical er-
ror, all the tracers should have about the same weight wp during the smulation. Therefore the
following iteration is performed: in afirst step asimulation is run to obtain the distribution of
tracersin phase space; in asecond step thisinformationisused to initially distribute the tracers
in phase space where they arereally needed.

Results

The following physical parameters have been used:

Deuterium, By = 25 T, Ti(sp) = Te = 5 keV where s = r/r,, aspect ratio A = Ry/ra = 10
with ra/p; = 135 = cylinder length L;/p; = 21Ry/p; = 8456, flat density profileny = L, =
1/|0Inng| = o, dInT; /ds profile peaking at 5o = 0.5 and L1(s9) = 1/|0InT;| = 1/3ra.

The following numerical parameters are used: a cubic spline finite element grid for the dis-
cretization of the electrostatic potential with n, = 64, ng = 128 and n, = 32, a total number
of N = 2% tracers, a Fourier filtering in (8,2) keeping only the —24 < m < 24 poloidal and
0 < n < 6toroidal modesand atime step in the linear phase of Q;At = 200 and in the nonlinear
phase of Q;At = 50.

The result of the nonlinear simulation can be seen in Fig. 6. On the left side the averaged ra
dia heat flux is shown over time. After the peak at t = 0.19 msit reaches a nearly constant
value without showing any influence of numerical noise. On the right side the absolute values
of AEkin = Exin(t) — Exin(to) and Efgq are seen to be nearly identical until the peak reaches
its maximum. In the saturation phase, energy conservation is, in contrast to previous results,
violated only dightly (less than 20%).



Thus, it is possible to achieve acceptable energy conservation for a3D ITG turbulence simu-
lation using a PIC code. As anext step the cylindrical configuration will be modified to more
elaborated configurations.

5. Fixed Boundary Equilibriawith Ilands for W7-X

The PIES (Princeton Island Equilibrium Solver) code ([17] - [21]) solvesthe magnetohydrostatic
equilibrium equations with the help of a Picard iteration of the fields,

O x B™=J(B").

In order to establish convergence, new field quantities are blended with those of the previous
iteration. The algorithm may require very large values of the blending parameter 0 < b < 1,
for instance b = 0.99, to guarantee stability of theiteration. Asaconsequence, many iterations
must be performed before the solution is approximated with satisfactory accuracy.

Significant acceleration of convergence is achieved by using periodic sequences of blending
parameters instead of aconstant one. Here, subsequent values of b, b, are chosen as

by = 1+ (b)/x,,

where x, are the zeroes of a Chebyshev polynomial. This method resultsin better damping of
the error of the solution. ([22], [23]).

The PIES code was used in fixed-boundary calculations of equilibriain the neighborhood of
W7-X. Starting fromthe original configuration, only the coefficients(1,1) and (3,4) were modi-
fied so that the resonancet = g isshifted into the volume between plasmaaxis and plasmaedge.
The computations started from fixed-boundary equilibria obtained with VMEC ([24], [25]). At
large iteration counts a solution is approximated with very good accuracy and showsvery small
g-islands. Figure 7 show as an example a case with () ~ 4.5%. The smooth rotational trans-
form profile reflects the small size of theidands.
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Figure7: Poincaréplots of the magnetic field after 560 iterations(left) and final profile of therotational
transform (right).

A new blending scheme was developed in which the currents are exempt from blending. The
initial error, associated with large islands occurring in thefirst iteration isreduced. Asaconse-
guence the solution can be obtained with fewer iterations.



6. Outlook

The Stellarator Theory Division in Greifswald isinvestigating various advanced (i. e. not con-
sidered in its original design) physical topicsrelevant for W7-X with the aim of understanding
a-particle driven instabilities, turbulence at the plasma edge/core and the topology of finite-3
equilibriawith islands.
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