
Edge Transport Modulation by Coherent Shear Flows
K. Hallatschek, A. Zeiler

Max-Planck-Institut f¨ur Plasmaphysik, EURATOM Association, D-85748 Garching, Germany
E-mail: hallatschek@ipp.mpg.de

Abstract. Different from the core, in the transitional core/edge regime a rich variety of distinct radi-
ally and poloidally coherent flow structures have been found by numerical and analytic studies, ranging
from solitary propagating zonal flows to sinusoidal structures with definite radial wavenumber. To-
ward the edge, the fluctuating flows get weaker until the coherent component of the flows vanishes
completely, which is analytically analogous to the Bose-Einstein phase transition. The coherent flow
structures strongly modulate the transport via wave-kinetic effects. The clear signature and the transport
relevance of the coherent flows in the transitional regime make them an ideal target for experimental
investigation.

1 Introduction

The energy confinement of tokamaks is mainly controlled by small scale (�cm) turbulence giv-
ing rise to the “anomalous transport”. Analytical and computer-aided studies have shown that
the anomalous transport in turn is often controlled by fluctuating “zonal flows” [1, 2, 3], vortices
whose cross-sections are very elongated in poloidal (along the minor angle) direction and have
radial scales similar to the ordinary turbulence. In the core, they are poloidally coherent (0,0)-
modes but exhibit no pronounced structure in radial direction [4]. In contrast, in the transitional
core/edge regime a rich variety of distinct radially and poloidally coherent flow structures have
been found numerically, ranging from sinusoidal structures with definite radial wavenumber
to solitary propagating zonal flows. Locally the flows strongly modulate the turbulence due
to wave-kinetic effects. In conjunction with the toroidal coupling of pressure perturbations to
the poloidal rotation (Stringer-Winsor term) this results in a new flow drive mechanism. Step-
ping farther out to the edge, the fluctuating flows tend to get weaker until the coherent flow
component vanishes and only poloidally and radially incoherent flows remain.

For cost reasons, the domains of turbulence simulations are usually thin flux tubes along the
magnetic field lines [5]. The flux tube dimensions perpendicular to the magnetic field are cho-
sen to accomodate the prevalent turbulent structures. For the elongated zonal flows, however,
these computational domains are not always adequate and the flowsappearto extend across the
complete flux tube. We analyze the question, whether this is true for arbitrarily large ratio of
flux surface circumference to turbulence scale length (poloidally coherent flows) or whether the
flows have a finite scale length in poloidal direction (poloidally incoherent flows). This question
is particularly relevant for tokamak edge turbulence, which has very small scales in comparison
with the flux surface circumference. For this purpose, domains up to the equivalent of a full
flux surface of the JET tokamak have been used in turbulence simulations.

2 Basic considerations

Before the numerical results we discuss the basic nature of the excitation mechanism of the
zonal flows. First of all we have to distinguish between a local or nonlocal mechanism in wave-
number space. In the first case the energy is transferred in small steps ink space towards smaller



wave-numbers until the zonal flow poloidal wave-numbers are reached. In this case the zonal
flows are really a part of the turbulence. This scenario is well known as the inverse energy
cascade, and occurs, e.g., in 2D Navier Stokes turbulence. Nonlocal excitation is due to the
nonlinear interaction of disparate scales. In this case, the flows are excited directly by the small
scale eddies without intermediate scale structures as mediators. An example for this process is
flow excitation by negative turbulence viscosity [1, 6, 7]. Since the tokamak zonal flows in any
case havekθ � kr the nonlinear interaction terms are very small for local interactions, and we
feel justified to assume a nonlocal generation process for the following, especially, since it is
also more consistent with the flow wave-number spectra.

In the nonlocal scenario we can distinguish between incoherent and coherent generation of
the flows. In the first case (analogous to spontaneous emission in atomic physics) the randomly
interacting small scale eddies generate flows without any phase relation to the already existing
flows. For the coherent generation, seed flows distort the small scale turbulence, which as a
response amplifies the initial flows in a fixed phase relation to the original flows. The incoher-
ent excitation is supposed to average out as the system size is increased compared to the eddy
size. Therefore only coherently generated flows can survive in large enough systems such as
realistic tokamaks. Usually we expect coherent and incoherent excitation to be present simulta-
neously. Their action on the set of eddies with large poloidal scale length can thus be described
analogous to the quantum mechanical boson statics. Depending on the parameters, partial con-
densation into the (0,0) modes can occur (analogous to the Bose Einstein condensation). Only
the condensed (0,0) flow component is independent of the system size, while the rest of the
(0,0) flows disappears, as the incoherent forces average out.

As for the coherent turbulence response to the flows one can distinguish between a wave-
kinetic response and a linear turbulence response. In the latter case, the turbulence slowly
adjusts to the zonal flows, e.g., by a locally altered growth rate, while in the first case, the
distortion of the turbulence eddies due to the flow directly changes their properties, e.g., by
compressing or moving them in space.

In an electrostatic model there are essentially two drive terms for poloidalE�B flows. The
first is the radial divergence of the Reynolds stress [8]

δReynoldshv̇Ei= ∂xhvEvr;ion;totali (1)

with vE denoting the poloidalE�B velocity,h:i denoting the flux surface average, andvr;ion;total

denoting the total radial ion velocity including diamagnetic andE�B velocity. The second is
the torque on the plasma column due to the force of the magnetic field inhomogeneity on the
(1;0) pressure perturbations, the so called Stringer Winsor (SW) term

δStringerWinsorhv̇Ei= hpsinθi; (2)

with p being the pressure, andθ the poloidal angle. The SW term can give rise to the Stringer
spin up instability [9]. In the turbulence studies it is however found that the Stringer spin up
growth rate is always negligibly small due to the slow parallel sound wave which is needed as a
mediator to generate the pressure fluctuations driving the flows via (2).

3 Numerical Model

Numerical turbulence simulations have been carried out using the three dimensional electro-
static drift Braginskii equations with isothermal electrons (a subset of the equations of Ref. [10])
for parameters resembling the resistive ballooning regime (a) and the transitional core/edge
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Figure 1:E�B flow profile and heat flux profile as function of time (a) and att = 80 (b).

regime (b), where most of the heat flux is caused by ITG modes. The nondimensional parame-
ters in case (a) wereαd = 0:2, εn = 0:08,q= 5, τ = 1, ηi = 1, ŝ= 1, and in case (b)αd = 0:4,
ηi = 3 and the other parameters the same. The radial domain width was 24LRB (a) and 48LRB

(b), for the poloidal coherence studies, the widthLθ perpendicular tor and B was changed
between 24LRB (only for (a)), 192LRB, 384LRB, and 768LRB corresponding to a tokamak with
minor radiusr = Lθq=2π. For a definition of these parameters see Ref. [10]. The parameters of
the largest domains are consistent with the physical parametersR= 3 m,r = 1:5 m,Ln= 12 cm,
n= 3:5�1019 m�3, Zeff = 4, B0= 3:5 T, and for (a)T = 100 eV,LRB = 5:1 mm,ρs= 0:58 mm
and for (b)T = 200 eV,LRB = 3:6 mm,ρs= 0:82 mm. The perpendicular grid resolution was
5:3=LRB (a) and 2:6=LRB (b). Parallel to the magnetic field 12 points per poloidal connection
length were used. The largest runs had a grid of 128�4096�12. To check convergence, runs
with 32 points along the magnetic field per poloidal connection length have been performed,
too.

4 Radial flow structures in the transitional regime

Fig. 1 (a) shows the flux surface averaged ion heat flux and the flow amplitude as a function
of radius and time for a simulation run with the reference parameter set (b). After a transient
initial phase the flows together with the average turbulence level approach a relatively well
defined stationary equilibrium value. Apparently, the major part of the transport fluctuations
is controlled by the flows as each moving flow is accompanied by a transport front. From an
instantaneous plot of the radial flow pattern and the corresponding heat flux profile [Fig. 1 (b)]
one concludes, that the transport is nearly completely trapped in the regions with flow into the
electron diamagnetic direction (positive sign).

It has been found, that each flow (and transport) maximum is accompanied by a radial
double layer of the up-down asymmetric part of the ion heat fluxhvrTi sinθi, with the radial
E�B velocityvr and the ion temperatureTi . This asymmetric transport component is therefore
exactly in the right radial position to drive the flows via equation (2). According to the energy
balance the drive of the flows due to this asymmetric transport component in conjunction with



the SW term has been found stronger than the Reynolds stress drive.
These observations have been found qualitatively unchanged in the range 0:4< αd < 3:6,

0:04< εn < 0:2, 2< q< 5, 1� ηi � 5. There are however strong variations of the amplitude
of the flows and the strength of the turbulence modulation. For the resistive ballooning regime
case (a), we do not get the concentration of turbulence within the flow maxima in a certain
direction. Instead, the turbulence is simply suppressed in the regions of maximum flow shear.
The absence of the coherent flow drive in the ballooning case leads to radially incoherent flows.

To clarify the nature of the heat flux modulation in the transitional regime, several numerical
experiments have been performed. Most important it is necessary to check on one hand that
the zonal flows are the cause of the flux modulation and that both are not the consequence
of a third phenomenon, and on the other hand that the modulation is not a side effect of the
flows, such as a compression effect caused by the toroidal geometry which actually modulates
the transport. For this purpose arbitrary radial flow profiles were enforced onto the system
in a fully turbulent state, while simultaneously the density and temperature averages over the
toroidal angle,hniφ(r;θ);hTiiφ(r;θ), were kept fixed at the respective flux surface averages.

To approximate the stationary turbulent state of the system, first a propagating sinusoidal
flow profile with similar amplitude, frequency and propagation velocity was used. This ro-
bustly results in the same transport modulation as in the full system for a broad range of flow
amplitudes, frequencies and propagation velocities. I.e., the flows are indeed the cause of the
transport modulation.

To find out, whether the modulation can be explained by a local change of the linear growth
rate similar to the one analyzed in Ref. [11], the turbulence fluctuations were set to zero ev-
erywhere in a fully turbulent state except for a single flow peak. The (artificial) propagating
flow is then still causing a transport front, which would be impossible, if only the linear growth
rates are modified. In that case a local modulation of the turbulence intensity would have been
expected. Instead, the outcome of the experiment suggests that a wave-kinetic effect modulates
the heat flux.

The behaviour of the ITG modes can be qualitatively understood already in the simple drift
wave model of [1]. The dispersion relation of adiabatic driftwaves is

ω =
ωdkθ

1+(kρs)2
(3)

resulting in the radial group velocity

vg =
∂ω
∂kr

=�ωρ2
s

kθkr

1+(kρs)2
(4)

A zonal flowvE distorts a linear drift wave according to

∂tkr =�kθv0E; ky = const (5)

The acceleration of the group velocity is therefore always in the direction of increasing flow
velocity in electron diamagnetic direction,

∂tvg = ωρ2
s

k2
θv0E

1+(kρs)2
: (6)

Therefore the turbulence modes are attracted towards shear flow maxima in electron diamag-
netic direction, which explains the numerical observations.
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Figure 2: Part (a): Mean squarem= n= 0 shear flow amplitude per poloidal area as a function of
poloidal domain sizeLθ for case (a) (solid) without condensation and case (b) (dashed) exhibiting con-
densation; the thin line is proportional to1=Lθ. Part (b): Mean square shear flow amplitude as a function
of kθ for case (a) forLθ = 768LRB. Note the greatly different scale lengths of high-kθ turbulence and
low-kθ shear flows.

The up-down asymmetric modulation of the transport is analogous to adiabatic wave com-
pression. For the drift waves, the action invariant [12] is

φ2(1+(kρs)
2)2; (7)

whereφ is the fluctuating potential of the drift wave. Hence decreasingkr increases the drift
wave amplitude. According to (5) this is the case forkrkθv0E > 0. Due to magnetic shear, the
mode structure is approximately

kr � kθŝθ: (8)

Amplification occurs thus for ˆsθv0E > 0, which is exactly what is observed, even for simulation
runs with negative magnetic shear.

5 Poloidal coherence of zonal flows

After the study of transport modulation and the radial flow structures, we turn now to the ques-
tion of flow coherence in the poloidal angle direction.

The dependence of the average(0;0) shear flow energy density on the domain size,Lθ, is
compared for the resistive ballooning (a) and the transitional regime (b) in Fig. 2 (a). In contrast
to case (b), the(0;0) mode energy density decreases proportional to 1=Lθ ∝ 1=a, apparently
because the flows are incoherently generated and the random forcing averages out for increas-
ing domain size. In another perspective, the flows in (a) exhibit a finite poloidal scale length,
and there is no condensed (0,0) component of the flow spectrum. The intensity decay with in-
creasing domain width results because the given shear flow energy density is distributed equally
among an increasingly dense set of modes.

Thekθ spectrum of the poloidal flow velocityvE, for theLθ = 768LRB runs [for case (a) see
Fig. 2 (b)] exhibits a rise at lowkθ associated with the shear flows, different from the microtur-
bulence fluctuations atkθ � 1. The square amplitude of them= 0 mode in case (a) and (b) is
0:3 and 7 times, respectively, the total shear flow amplitude, suggesting strong condensation for
(b). In both cases, the typical poloidal scale length of them 6= 0 shear flows is roughly a factor



10 greater than the scales of the turbulence. Failure of the computational domain to accomodate
the finite scales of the uncondensed shear flows in case (a) results in an overestimate of the shear
flow amplitude, and hence in an underestimate of the anomalous transport. The particle flux for
Lθ = Lr = 24LRB was found to be 25% lower than forLθ = 768LRB.

The poloidal zonal flow spectra can be understood in a model, in which their poloidal and
radial wavenumber spectra are controlled by the interplay of damping by the collisional electron
response and ion dissipation, the linear response of the turbulence to the flows, and the exci-
tation of zonal flows by random fluctuations. Under certain conditions, a finite fraction of the
flow amplitudedoescondense into zonal flows with zero poloidal and toroidal mode numbers
(m;n), regardless of the system size. The mechanism is analogous to the Bose-Einstein conden-
sation (BEC). The three effects acting on the flows take the role of absorption, stimulated, and
spontaneous emission. For the BEC, a finite fraction of the quanta is eventually scattered into
the ground state because the state densitynear the ground state is too low to hold an arbitrary
amount of quanta under the prevalent conditions. In the zonal flow case, the total shear flow
energy is regulated by the turbulence such that the average growth rate of the turbulent modes is
zero. It can be shown [13] that a finite fraction of the zonal flows “condenses” into (0,0) modes
as soon as a threshold in required flow amplitude is exceeded, and them 6= 0 modes are unable
to receive it.

6 Conclusions and consequences

Radially coherent zonal flows have been observed in numerical turbulence simulations of the
transitional regime between core and edge. Due to their clear signature – coherent oscillations
with well defined frequency and wavenumber – they should be an interesting target for experi-
mental scrutiny. The flows are essentially geodesic acoustic modes, which is possible because
the parallel sound wave is too slow to short-circuit the pressure perturbation associated with the
GAMs. The flows are primarily driven by the up-down asymmetric component of the anoma-
lous transport in conjunction with the Stringer Winsor effect, and not by Reynolds stress or
indirectly by the mediation of the parallel sound wave as in the conventional Stringer spin up
instability.

The flows strongly modulate the transport locally in space and time by wave-kinetic ef-
fects. The maxima and minima of the flux surface averaged transport are associated with the
maxima of the flows in electron and ion diamagnetic direction, respectively. This is caused by
an attractive force exerted by the flow in electron diamagnetic direction upon the turbulence.
Furthermore, wave compression by the flow shear leads to the up-down asymmetry in trans-
port which drives the flows. Both effects are absent for vanishing diamagnetic drift velocity
and gyro radius, such as in the resistive ballooning regime, resulting in only weakly driven
incoherent flows.

Regarding the poloidal coherence, it has been shown numerically that in the case of incoher-
ent flow drives, the shear flows controlling the turbulence are not only(0;0) modes but rather
consist of a spectrum of poloidal mode numbers. The(m;n) 6= (0;0) flows differ from drift
waves or convective cells by their large poloidal [10 times larger than the turbulence (Fig. 2
[b])] and parallel scale length, while their perpendicular scale length is similar to that of the tur-
bulence. In the limit of large system size, a non-zero (0,0)-mode amplitude develops only if the
shear flows undergo a condensation into these modes, analogous to the Bose–Einstein conden-
sation. Up to now, in flux tube based turbulence computations the zonal flows were implicitly
assumed to be global modes. With domain widths inadequate to the rather large poloidal scales
of the zonal flows, the uncondensed phase of the zonal flowsappearsto have zero poloidal



and toroidal mode number. Such modes do not experience the resistive damping, which would
reduce the flow amplitude in a full system. Hence, the simulations tend to overestimate the
total flow amplitude. Because often the anomalous transport critically depends on the zonal
flows, for quantitative results, flux tube simulations have to be checked for influences of a finite
poloidal scale length of the zonal flows.
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[JETP86, 357 (1998)]

[7] A. V. Gruzinovet al., Phys. Plasmas1, 3148 (1994)

[8] A. I. Smolyakov,to be published

[9] A. B. Hassamet al., Phys. Plasmas1, 337 (1994)

[10] B. N. Rogerset al., Phys. Rev. Lett81, 4396 (1998)

[11] K. L. Sidikmanet al., Phys. Plasmas1, 1142 (1994)

[12] A. I. Smolyakovet al., Phys. Plasmas6, 4410 (1999)

[13] K. Hallatschek, Phys. Rev. Lett.84, 5145 (2000)


