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Abstract. The present work addresses the issue of identifying the major nonlinear physics processes which may

regulate drift and drift-Alfvén turbulence using a weak turbulence approach. Within this framework, based upon

the nonlinear gyrokinetic equation for both electrons and ions, we present an analytic theory for nonlinear zonal

dynamics described in terms of two axisymmetric potentials,δφz and δA‖z, which spatially depend only on a

(magnetic) flux coordinate. Spontaneous excitation of zonal flows by electrostatic drift microinstabilities is demon-

strated both analytically and by direct 3D gyrokinetic simulations. Direct comparisons indicate good agreement

between analytic expressions of the zonal flow growth rate and numerical simulation results for Ion Temperature

Gradient (ITG) driven modes. Analogously, we show that zonal flows may be spontaneously excited by drift-

Alfv én turbulence, in the form of modulational instability of the radial envelope of the mode as well, whereas, in

general, excitations of zonal currents are possible but they have little feedback on the turbulence itself.

1. Introduction

In recent years, there has been increasing attention devoted to exploring nonlinear dynamics of
zonal flow [1] associated with electrostatic drift-type turbulence [2, 3, 4]. On the other hand,
despite it being well known how electrostatic drift modes couple to the electromagnetic shear
Alfv én wave as the plasmaβ (orR0β

′) increases [5, 6, 7], little effort has been devoted so far to
investigating nonlinear zonal dynamics of drift-Alfv´en turbulence.

The present work addresses the issue of identifying the major nonlinear physics processes which
may regulate drift and drift-Alfv´en turbulence using a weak turbulence approach. Within this
framework, based upon the nonlinear gyrokinetic equation [8] for both electrons and ions, we
present an analytic theory for nonlinear zonal dynamics described in terms of two axisymmetric
potentials,δφz andδA‖z, which spatially depend only on a (magnetic) flux coordinate. Phys-
ically, δφz is associated with zonal flow formation, whileδA‖z corresponds to zonal currents
δj‖z = −(c/4π)∇2

⊥δA‖z. The introduction of azonal vector potential, δA‖z, is one of the
characteristic differences of the electromagnetic with respect to the electrostatic case.

Zonal potentials are characterized by time variations on typical scales which are long com-
pared to the characteristic ones of the drift-Alfv´en instabilities. This specific ordering of time
scales, which formally requires proximity to the marginal stability such that the linear growth
rate is smaller than the mode frequency, will be exploited for explicitly manipulating formal
expressions in the theoretical analysis. In contrast to other approaches, however, which also as-
sume slow radial variations of the zonal fields (k−1

z ) with respect to the typical spatial scale
of the background turbulence (k−1

r ), we generally takekz ≈ kr, although we still assume
|∂rkz/k

2
z | � 1 for consistency of our eikonal approach. In this respect our work is the gen-

eralization of Ref. [9], which demonstrated that zonal flows can bespontaneously excitedby
electrostatic drift turbulence and that these are characterized bykz ≈ kr (FIG. 1). In the present



work, we show that zonal flows in toroidal equilibria can bespontaneously excitedvia modu-
lationsof the radial structure (envelope) of a single-n coherent drift-wave, withn the toroidal
mode number. In this framework, the turbulent state and the nonlinear couplings among differ-
entn’s will manifest only via zonal dynamics. Similarly to Ref. [9], the present theory is strictly
applicable to toroidal plasma equilibria, where poloidal asymmetry forces each mode to be (at
least in the linear limit) the superposition of many poloidal harmonicsm, characterized by the
samen. In this respect, the present theoretical analysis is a systematic treatment of the radial
mode structure (envelope) of zonal fields and drift turbulence in the general electromagnetic
case, including slow time evolutions and accounting for linear (toroidal) and nonlinear mode
couplings on the same footing. More specifically, we demonstrate that zonal flows (δφz) are due
to charge separation effectsassociated with both finite ion Larmor radius and finite ion orbit
width effects (magnetic curvature), whereas zonal currents (δA‖z) are due to parallel electron
pressure imbalance (cf. also Ref. [10]).

Spontaneous excitation of zonal flows by electrostatic drift microinstabilities is demonstrated
both analytically and by direct 3D gyrokinetic simulations [9]. Direct comparisons indicate
good agreement between analytic expressions of the zonal flow growth rate and numerical sim-
ulation results for ITG modes. Analogously, we show that zonal flows may bespontaneously
excitedby drift-Alfv én turbulence, in the form ofmodulational instabilityof the radial envelope
of the mode as well. From the analytic expression for the growth rate of the spontaneously
excited zonal flows (δφz) we show how no flow generation is expected for apure shear Alfv´en
wave, due to the peculiar nature of theAlfvénic state. Meanwhile, we also demonstrate that in
general zonal currents are also excited but they have negligible effect on the turbulence itself.
The general results obtained within this theoretical model are also applied to Alfv´enic oscilla-
tions; such as the Kinetic Alfv´en Waves and the more recently discussed Alfv´en ITG (AITG) [6]
mode.

2. Theoretical Model

Here, we strictly follow Ref. [9] and assume a low-β (β = 8π/B2) toroidal equilibrium with
major radiusR0 and minor radiusa, with typicallyR0/a = 1/ε � 1. For simplicity, we also
take the case of shifted circular magnetic flux surfaces. In this case, we can describe drift wave
dynamics in terms of two scalar fields: the scalar potentialδφ and the parallel vector potential
δA‖ fluctuations. For both fluctuating fields, as stated in the Introduction, we describe the non-
linear dynamic evolution in terms of a four-mode coupling scheme,i.e., each electromagnetic
fluctuation is taken to be coherent and composed of a singlen 	= 0 drift wave(δφd, δA‖d) and a
zonal perturbation(δφz, δA‖z); e.g., for scalar potential fluctuations we take

δφd = δφ0 + δφ+ + δφ−

δφ0 = ei
∫
nθkdq+inϕ

∑
m

e−imϑφ0(nq −m) + c.c. ,

δφ± =

 ei
∫
nθkdq

e−i
∫
nθ∗kdq

 e±inϕ+i
∫
kzdr

∑
m

e∓imϑφ±(nq −m) + c.c. ,

δφz = ei
∫
kzdrφz + c.c. , (1)

where(r, ϕ, ϑ) are toroidal coordinates, and an analogue decomposition is assumed for fluctu-
ating parallel vector potentials. Here,θk is the eikonal describing the radial structure of the drift
wave radial envelope andq is the safety factor. Thus, Eq. (1) suggests that zonal fields may be



actually considered as radial modulations of the drift wave envelope, while the(±) modes are
simply upper and lower sidebands due to zonal fields modulations of the drift wave [9]. Fur-
thermore, we have adopted the convention that, in the expressions involving the± sidebands,
the first row in a two component array will refer to the+ while the second row will refer to the
− sideband. The same notation will be used throughout.

We first derive nonlinear equations for zonal fields from the quasineutrality condition and par-
allel Ampère’s law. Here, we just report the final results of such derivations in the small ion
Larmor radius (ρLi) limit: details will be given elsewhere. Contrary to the electrostatic limit,
where the electron response to ann 	= 0 perturbation is adiabatic and, thus, only ions contribute
to the nonlinear dynamics, electron nonlinearities are important in the general electromagnetic
case. Assumingk2

⊥ρ
2
Li � 1, the nonlinear coupling coefficients are formally of the Hasegawa-

Mima type and the quasineutrality condition reads:

∂tχizδφz =
c

B
kϑkzk

2
zρ

2
Li

α0 −
∣∣∣∣∣k‖vAω0

∣∣∣∣∣
2
 〈〈|Ψ0|2〉〉 + 2α0IRe〈〈(Φ0 − Ψ0)

∗Ψ0〉〉

+α0〈〈|Φ0 −Ψ0|2〉〉
]
(A∗

0A+ − A0A−) . (2)

Here, we have introduced the notationsχiz 
 1.6q2ε−1/2k2
zρ

2
Li [11], α0 ≡ 1 + δP⊥i0/(neδφ0),

b · ∇δψ ≡ −(1/c)∂tδA‖, Φ0 indicates the symmetric Fourier Transform into ballooning space
of φ0 in Eq. (1) and similar notations are used for the other scalar fields. Furthermore, we have
omitted for simplicity collisional damping ofδφz [12], 〈〈. . .〉〉 stands for integration over bal-
looning space,|k‖|2〈〈|Ψ0|2〉〉 ≡ 〈〈|∂θΨ0/qR0|2〉〉, θ is the “angle-like” coordinate in ballooning
space, andA0 andA± indicate the amplitude of radial envelopes of the drift wave and sidebands
at the current radial position. Similarly, from the parallel Amp`ere’s law we obtain

∂tδA‖z =
c

B
kϑkzk

2
zδ

2
e

〈〈1 − α0

∣∣∣∣∣ ω0

k‖vA

∣∣∣∣∣
2
 ω0

k‖c

 |Ψ0|2

+2IRe

(
ω0

k‖c
(Φ0 −Ψ0)

∗Ψ0

)]〉〉
(A∗

0A+ − A0A−) . (3)

Here, the presence ofδ2
e = c2/ω2

pe is a consequence of the strong shielding effect of parallel
electron current on the electron collisionless skin depth. Furthermore, theforced response in
δA‖z has been neglected since it is of order(ωz/ω0)(kz/k⊥)/(1 − ω2

0α0/k
2
‖v

2
A) with respect

to the spontaneously excited component of Eq. (3). A direct comparison of Eqs. (2) and (3)
indicates that both zonal fields may be spontaneously excited except for apure shear Alfv´en
wave, for which ω2

0 = k2
‖v

2
A, α0 = 1 andΦ0 = Ψ0. In general, however, zonal flows can

be efficiently excited viaδφz, whereas zonal currents (or poloidal magnetic fields) are strongly
reduced because of electron shielding on scale lengths larger thatδe. We also note that, typically,

ω0

k‖c
δA‖z ≈

ω2
0

k2
‖v

2
A

k2
zδ

2
eδφz � δφz ,

which will make it possible to neglect the effect ofδA‖z below.

The drift wave nonlinear equations are the quasineutrality condition

ne2

Ti

(
1 +

Ti
Te

)
δφk =

〈
eJ0(γ)δHi

〉
k
−
〈
eδHe

〉
k
, (4)



and the vorticity equation

B∂�

(
k2
⊥
∂�δψk
B

)
+
ω2

v2
A

k2
⊥
bi

[(
1 − ω∗ni

ω

)
(1 − Γ0(bi)) −

ω∗T i

ω
bi(Γ0(bi) − Γ1(bi))

]
δφk

=
4π

c2
∑
e,i

〈eωωdJ0δH〉k +
b · (k′′

⊥ × k′
⊥)

cB
∂t
(
δA‖,k′∇2

⊥δA‖k′′
)
k

+
4π

c2
∂t〈e

c

B
b · (k′′

⊥ × k′
⊥)(J0(γ)J0(γ

′) − J0(γ
′′))δLk′δHik′′〉k . (5)

In Eqs. (4) and (5), the subscriptk stands for0 or ± depending on whether the drift wave
or its sidebands are considered, simple angular brackets〈. . .〉 denote velocity space integra-
tion, γ ≡ k⊥v⊥/ωci, J0 is the Bessel function of zero order,∂� ≡ b · ∇, bi = k2

⊥ρ
2
Li,

Γ0,1(bi) ≡ I0,1(bi) exp(−bi), ω∗ni and ω∗T i are the ion diamagnetic frequencies associated
with - respectively - density and temperature gradients,ωd is the magnetic drift frequency,
k = k′ + k′′, δLk ≡ δφk − (v‖/c)δA‖k and the fluctuating particle distribution functions have
been decomposed in adiabatic and nonadiabatic responses as

δF =
e

m
δφ

∂

∂v2/2
F0 +

∑
k⊥

exp (−ik⊥ · v × b/ωc) δHk . (6)

The nonadiabatic response of the particle distribution function,δH, is obtained from the non-
linear gyrokinetic equation [8]:(

∂t + v‖∂� + iωd
)
k
δHk = i

e

m
QF0J0(γ)δLk −

c

B
b · (k′′

⊥ × k′
⊥)J0(γ

′)δLk′δHk′′ ,

QF0 = ωk
∂F0

∂v2/2
+ k · b̂×∇

ωc
F0 . (7)

In Eq. (7), the linear response∝ QF0 and the “generalized”E×B nonlinearity (in the guiding
center moving frameδφ→ δφ− (v‖/c)δA‖) are readily recognized.

Equations (4) and (5) are further simplified when we decompose the linear particle response to
the fluctuating fields as [13]:

δH
LIN

= − e

m
J0(γ)

QF0

ω
δψ + δK , (8)

where thelinearizedgyrokinetic equation forδK is readily derived from Eq. (7) and may be
found in Ref. [13]. It is then readily shown that the quasineutrality condition, Eq. (4), can be
cast into the form

ne2

Ti

{(
1 +

Ti
Te

)
(δφ− δψ)k +

[(
1 − ω∗ni

ω

)
(1 − Γ0(bi)) −

ω∗T i

ω
bi(Γ0(bi) − Γ1(bi))

]}
δψk

−
∑
e,i

〈eJ0(γ)δK〉k = − i

ωk

〈
e
c

B
b · (k′′

⊥ × k′
⊥)(J0(γ)J0(γ

′) − J0(γ
′′))δLk′δHik′′

〉
k

− i

ωk

〈
e
c

B
b · (k′′

⊥ × k′
⊥)δφk′δHek′′

〉
k
−
〈
eδH

NL

e

〉
k
, (9)

whereδH
NL

e indicates the nonlinear nonadiabatic electron response only, which vanishes in the
electrostatic limit, as stated above.



Assuming, now,k2
⊥ρ

2
Li � 1, consistently with Eqs. (2) and (3), and introducing the notation

δK = δ̂Kφ(δφ− δψ) + δ̂Kψδψ , (10)

Eqs. (5) and (9) for the sidebands in the ballooning space can be rewritten as:1 +
Ti
Te

−
∑
e,i

〈
eJ0(γ)δ̂Kφ

〉
±

A±

(
Φ0 − Ψ0

Φ∗
0 − Ψ∗

0

)

+

(1 − ω∗pi

ω

)
bi± −

∑
e,i

〈
eJ0(γ)δ̂Kψ

〉
±

A±

(
Ψ0

Ψ∗
0

)

= − i

ω0

c

B

Ti
Te
kϑkzδφz

[(
1 +

ω∗ni

ω0

Te
Ti

)(
A0Ψ0

A∗
0Ψ

∗
0

)
−
(
A0(Φ0 − Ψ0)
A∗

0(Φ
∗
0 − Ψ∗

0)

)]
, (11)

{
∂θ

(
k2
⊥
k2
ϑ

∂θ

)
+
ω2

ω2
A

k2
⊥
k2
ϑ

[(
1 − ω∗pi

ω

)
− 3

4
bi

(
1 − ω∗pi

ω
− ω∗T i

ω

)]

−4πq2R2
0

k2
ϑc

2

∑
e,i

〈eωωdJ0δ̂Kψ〉


±

A±

(
Ψ0

Ψ∗
0

)
+

{
ω2

ω2
A

k2
⊥
k2
ϑ

[(
1 − ω∗pi

ω

)

−3

4
bi

(
1 − ω∗pi

ω
− ω∗T i

ω

)]
− 4πq2R2

0

k2
ϑc

2

∑
e,i

〈eωωdJ0δ̂Kφ〉


±

A±

(
Φ0 − Ψ0

Φ∗
0 − Ψ∗

0

)

=
4πiω0

k2
ϑc

2

c

B

ne2

Ti
q2R2

0kϑkzδφzbi

(
A0Φ0

A∗
0Φ

∗
0

)
. (12)

Equations (2), (11) and (12), together with Eq. (7) are the basis for our analytic investigations
described in the next section.

3. Some Applications

In the electrostatic limit [9],Ψ0 → 0, we obtain from Eq. (11)

DS±A± =
i

ω0

c

B

Ti
Te
kϑkzδφz〈〈|Φ0|2〉〉

(
A0

A∗
0

)
, (13)

where

DS± =

〈〈1 +
Ti
Te

−
∑
e,i

〈eJ0(γ)δ̂Kφ〉±

( Φ2
0

Φ∗2
0

)〉〉〈〈(
Φ2

0

Φ∗2
0

)〉〉−1

(14)

and [9]DS± 
 i(∂DS0r/∂ω0)(−i∆±Γz ± γd), ∆ = (k2
z/2)(∂

2DS0r/∂k
2
r )/(∂DS0r/∂ω0) is the

frequency mismatch,kr = nq′θk, Γz = −iωz andγd is the sideband damping [9]. Substituting
Eq. (13) into Eq. (2), we readily obtain a nonlinear dispersion relation forΓz, which,in the
|∆| � γd, γM limit, reads

Γz = −γd/2 +
(
γ2
M + γ2

d/4
)1/2

, (15)

whereγ2
M = (2α0ε

1/2/1.6q2)(Ti/Te)(ω0∂DS0r/∂ω0)
−1k2

zρ
2
Lik

2
ϑv

2
thi〈〈|eA0Φ0/Ti|2〉〉. Including

finite zonal flow collisional damping into Eq. (2),νz 
 (1.5ετii)
−1 [12], would have produced
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FIG. 1. : From Ref. [9]. (A) Analytic prediction of zonal flow growth rate (normalized to the linear one
γ0) vs. mode amplitude (solid line) compared with gyrokinetic simulation results. (B) Zonal flow growth
rate vs.θ0 = kz/nq′, for fixed mode amplitude.

a threshold conditionγ2
M ≥ νzγd on the modulational instability growth rateΓz of Eq. (15).

In FIG. 1, Γz as obtained from Eq. (15) is shown to be in good agreement with the results
obtained by direct 3D gyrokinetic simulations [9] of ITG modes, in whichγd 
 1.5γ0, γ0

being the linear growth rate of the mode. Nonlinear equations for mode amplitudes have been
recently derived [9] and they demonstrate saturation of the linearly unstable modes via coupling
to the stable envelope sidebands and oscillatory behaviors in the drift-wave intensity and zonal
flows [9].

For electromagnetic modes, and more specifically for Alfv´enic-type waves, we typically have
|Φ0 − Ψ0| � |Ψ0| in Eqs. (11) and (12). In fact, assumingk2

‖q
2R2

0 � 1 [6], we have from
Eq. (11)(

Φ0 −Ψ0

Φ∗
0 −Ψ∗

0

)
A± 
 −

(
(k2

‖v
2
A/ω

2)bi

Ti/Te + ω∗ni/ω

)
±

(
Ψ0

Ψ∗
0

)
A± − i

c

B

kϑkz

ω0
δφz

(
A0Ψ0

A∗
0Ψ

∗
0

)
, (16)

where we recall thatk2
‖, in the present treatment, stands for an operator in the ballooning space.

Substituting back into Eq. (12), this yields [6]

LM±

(
Ψ0

Ψ∗
0

)
A± = i

ω0

ω2
A

c

B
kϑkz

k2
⊥±
k2
ϑ

δφz

(
1 +

k2
‖v

2
A

ω2

)
±

(
A0Ψ0

A∗
0Ψ

∗
0

)
, (17)

LM± =

{
∂θ

(
k2
⊥
k2
ϑ

∂θ

)
+

ω2

ω2
A

k2
⊥
k2
ϑ

[(
1 − ω∗pi

ω

)(
1 −

(k2
‖v

2
A/ω

2)bi

Ti/Te + ω∗ni/ω

)
− 3

4
bi

(
1 − ω∗pi

ω

−ω∗T i

ω

)]
− 4πq2R2

0

k2
ϑc

2

∑
e,i

〈eωωdJ0δ̂Kψ〉 −
(k2

‖v
2
A/ω

2)bi

Ti/Te + ω∗ni/ω

∑
e,i

〈eωωdJ0δ̂Kφ〉


±

. (18)

Equation (17) can be cast into the form

DM±A± = i
ω0

ω2
A

c

B
kϑkzδφz

(
1 +

K2
‖v

2
A

ω2

)
±

(
A0

A∗
0

)
,

DM± ≡
〈〈(

Ψ0

Ψ∗
0

)
LM±

(
Ψ0

Ψ∗
0

)〉〉〈〈
k2
⊥±
k2
ϑ

(
Ψ2

0

Ψ2∗
0

)〉〉−1

,

K2
‖± ≡

〈〈(
Ψ0

Ψ∗
0

)
k2
⊥±
k2
ϑ

k2
‖±

(
Ψ0

Ψ∗
0

)〉〉〈〈
k2
⊥±
k2
ϑ

(
Ψ2

0

Ψ2∗
0

)〉〉−1

. (19)



From Eq. (19) and Eq. (2), it is possible to derive the nonlinear dispersion relation forΓz, similar
to the electrostatic case. Specifically, usingDM− = D∗

M+, we obtain:

Γz = 2k2
ϑρ

2
Li

k2
zv

2
thi

ω0

ω2
0

ω2
A

ε1/2

1.6q2

〈〈∣∣∣∣eA0Ψ0

Ti

∣∣∣∣2
〉〉 IIm

[
DM+

(
1 +K2

‖v
2
A/ω

2
)
−

]
|DM+|2

×
[(
α0 −

∣∣∣∣∣K
2
‖v

2
A

ω2
0

∣∣∣∣∣
)
− 2α0IRe

(
(K2

‖v
2
A/ω

2)K2
⊥ρ

2
Li

Ti/Te + ω∗ni/ω

)
±

]
,

K2
‖+K

2
⊥+ ≡

〈〈
Ψ∗

0k
2
⊥+k

2
‖+Ψ0

〉〉 〈〈
|Ψ0|2

〉〉−1
. (20)

It is straightforward to further specialize Eq. (20) to the case of KAW, for whichDM =
−q2R2

0K
2
‖ + (ω2/ω2

A)(1 −K2
⊥ρ

2
Li(3/4 + Te/Ti)). In this caseα0 = 1, and defining

γ̂2
M = 2k2

ϑρ
2
Lik

2
zv

2
thi

ε1/2

1.6q2

(
3

4
− Te
Ti

)
K2

⊥ρ
2
Li

〈〈∣∣∣∣eΨ0

Ti

∣∣∣∣2
〉〉

,

∆̂ =
(

3

4
+
Te
Ti

)
k2

zρ
2
Liω0 , (21)

we obtain
Γz,KAW 
 γ̂M

√
1 − ∆̂2/γ̂2

M . (22)

From Eqs. (21) and (22) we see that zonal flows can be spontaneously excited by KAW’s and
that, as in the electrostatic case, the growth rateΓz above threshold scales linearly with the
wave amplitude. However, the most important feature of KAW’s is that they spontaneously
generate zonal flows in their propagating region forTe < (3/4)Ti and in their cut-off region for
Te > (3/4)Ti.

Another application of Eq. (20) is to AITG modes [6]. In this case, sufficiently close to the
unstableAlfv én continuum accumulation point,DM = Λ2 + iΛδWf, whereδWf is the MHD
potential energy associated with the mode andΛ2 is a generalized inertia given by

Λ2 =
ω2

ω2
A

(
1 − ω∗pi

ω

)
+ q2ωωti

ω2
A

[(
1 − ω∗ni

ω

)
F (ω/ωti) −

ω∗T i

ω
G(ω/ωti) −

N2(ω/ωti)

D(ω/ωti)

]
,

(23)
and the functions,F (x),G(x), N(x) andD(x) with x = ω/ωti, ωti =

√
2vthi/(qR0), and using

the plasma dispersion functionZ(x), are defined as [6, 14]

F (x) = x
(
x2 + 3/2

)
+
(
x4 + x2 + 1/2

)
Z(x) ,

G(x) = x
(
x4 + x2 + 2

)
+
(
x6 + x4/2 + x2 + 3/4

)
Z(x) ,

N(x) =
(
1 − ω∗ni

ω

) [
x +

(
1/2 + x2

)
Z(x)

]
− ω∗T i

ω

[
x
(
1/2 + x2

)
+
(
1/4 + x4

)
Z(x)

]
,

D(x) =
(

1

x

)(
1 +

Te
Ti

)
+
(
1 − ω∗ni

ω

)
Z(x) − ω∗T i

ω

[
x+

(
x2 − 1/2

)
Z(x)

]
. (24)

With the new definitions

γ̃2
M = 2k2

ϑρ
2
Li

(
k2

zv
2
thi

ω2
A∂IReΛ2/∂ω2

0

)
ε1/2

1.6q2

(
1 − ω∗pi

ω0
− ω2

A

ω2
0

IReΛ2

)〈〈∣∣∣∣eΨ0

Ti

∣∣∣∣2
〉〉

,

∆̃ =
k2

z

2

∂2δW 2
f

∂k2
r

/
∂

∂ω0
IReΛ2 , (25)



the zonal flow growth rate induced by AITG is:

Γz,AITG = γ̃M

√
1 − ∆̃2/γ̃2

M . (26)

As in the case of KAW, we find a condition for effective excitation of zonal flow by AITG, i.e.,
ω0 > ω∗pi, which is the typical case for slightly unstable AITG [14]. Above threshold, also
AITG driven zonal flow growth rate scales linearly with the mode amplitude.

4. Conclusions

In the present work, we have demonstrated that zonal flows may be spontaneously generated by
a variety of drift and drift-Alfvén turbulences and, above theirspontaneous excitationthreshold,
their growth rate typically scales linearly with the mode amplitudes. In the electrostatic limit,
good agreement is shown between numerical results from 3D gyrokinetic simulations of ITG
and the obtained analytic expression [9]. In the same limit, nonlinear equations for mode am-
plitudes have been recently derived [9] and they demonstrate saturation of the linearly unstable
modes via coupling to the stable envelope sidebands and, as a consequence, oscillatory behav-
iors in the drift-wave intensity and zonal flows [9]. Similar behaviors can also be expected in
the general electromagnetic case, which will be analyzed in the near future.
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