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Abstract. The present work addresses the issue of identifying the major nonlinear physics processes which may
regulate drift and drift-Alf€n turbulence using a weak turbulence approach. Within this framework, based upon
the nonlinear gyrokinetic equation for both electrons and ions, we present an analytic theory for nonlinear zonal
dynamics described in terms of two axisymmetric potentiés, and A ,, which spatially depend only on a
(magnetic) flux coordinate. Spontaneous excitation of zonal flows by electrostatic drift microinstabilities is demon-
strated both analytically and by direct 3D gyrokinetic simulations. Direct comparisons indicate good agreement
between analytic expressions of the zonal flow growth rate and numerical simulation results for lon Temperature
Gradient (ITG) driven modes. Analogously, we show that zonal flows may be spontaneously excited by drift-
Alfv’en turbulence, in the form of modulational instability of the radial envelope of the mode as well, whereas, in
general, excitations of zonal currents are possible but they have little feedback on the turbulence itself.

1. Introduction

In recent years, there has been increasing attention devoted to exploring nonlinear dynamics of
zonal flow [1] associated with electrostatic drift-type turbulence [2, 3, 4]. On the other hand,
despite it being well known how electrostatic drift modes couple to the electromagnetic shear
Alfven wave as the plasnia(or R,/3’) increases [5, 6, 7], little effort has been devoted so far to
investigating nonlinear zonal dynamics of drift-Adfr turbulence.

The present work addresses the issue of identifying the major nonlinear physics processes which
may regulate drift and drift-Alfeh turbulence using a weak turbulence approach. Within this
framework, based upon the nonlinear gyrokinetic equation [8] for both electrons and ions, we
present an analytic theory for nonlinear zonal dynamics described in terms of two axisymmetric
potentials,0¢, anddAj,, which spatially depend only on a (magnetic) flux coordinate. Phys-
ically, d¢, is associated with zonal flow formation, whilel;, corresponds to zonal currents

§jj, = —(c/4m)V16A),. The introduction of azonal vector potentialdA;,, is one of the
characteristic differences of the electromagnetic with respect to the electrostatic case.

Zonal potentials are characterized by time variations on typical scales which are long com-
pared to the characteristic ones of the drift-Afvinstabilities. This specific ordering of time
scales, which formally requires proximity to the marginal stability such that the linear growth
rate is smaller than the mode frequency, will be exploited for explicitly manipulating formal
expressions in the theoretical analysis. In contrast to other approaches, however, which also as-
sume slow radial variations of the zonal fields {) with respect to the typical spatial scale

of the background turbulencé ('), we generally take:, ~ k,, although we still assume
|0.k,/k2| < 1 for consistency of our eikonal approach. In this respect our work is the gen-
eralization of Ref. [9], which demonstrated that zonal flows casfmntaneously excitealy
electrostatic drift turbulence and that these are characterizéd yk, (FIG. 1). In the present



work, we show that zonal flows in toroidal equilibria candmontaneously exciteda modu-
lations of the radial structureefivelopg of a singlern coherent drift-wave, witl the toroidal

mode number. In this framework, the turbulent state and the nonlinear couplings among differ-
entn’s will manifest only via zonal dynamics. Similarly to Ref. [9], the present theory is strictly
applicable to toroidal plasma equilibria, where poloidal asymmetry forces each mode to be (at
least in the linear limit) the superposition of many poloidal harmoni¢cgharacterized by the
samen. In this respect, the present theoretical analysis is a systematic treatment of the radial
mode structure (envelope) of zonal fields and drift turbulence in the general electromagnetic
case, including slow time evolutions and accounting for linear (toroidal) and nonlinear mode
couplings on the same footing. More specifically, we demonstrate that zonal dloys(e due

to charge separation effecssociated with both finite ion Larmor radius and finite ion orbit
width effects (magnetic curvature), whereas zonal curreis,j are due to parallel electron
pressure imbalance (cf. also Ref. [10]).

Spontaneous excitation of zonal flows by electrostatic drift microinstabilities is demonstrated
both analytically and by direct 3D gyrokinetic simulations [9]. Direct comparisons indicate
good agreement between analytic expressions of the zonal flow growth rate and numerical sim-
ulation results for ITG modes. Analogously, we show that zonal flows magpbataneously
excitedoy drift-Alfv'en turbulence, in the form ehodulational instabilityof the radial envelope

of the mode as well. From the analytic expression for the growth rate of the spontaneously
excited zonal flowsdgp,) we show how no flow generation is expected fqruae shear Alfen

wave due to the peculiar nature of tidfvénic state Meanwhile, we also demonstrate that in
general zonal currents are also excited but they have negligible effect on the turbulence itself.
The general results obtained within this theoretical model are also applied enidfascilla-

tions; such as the Kinetic Alkri Waves and the more recently discussed&ifii G (AITG) [6]

mode.

2. Theoretical M odel

Here, we strictly follow Ref. [9] and assume a lgs3 = 87/B?) toroidal equilibrium with

major radiusk, and minor radius, with typically Ry/a = 1/e > 1. For simplicity, we also

take the case of shifted circular magnetic flux surfaces. In this case, we can describe drift wave
dynamics in terms of two scalar fields: the scalar potentiehnd the parallel vector potential

d A fluctuations. For both fluctuating fields, as stated in the Introduction, we describe the non-
linear dynamic evolution in terms of a four-mode coupling scheimee,each electromagnetic
fluctuation is taken to be coherent and composed of a singlé) drift wave (064, §A)5) and a

zonal perturbatioit¢,, 6 A,); e.g, for scalar potential fluctuations we take

0¢pa = 0o + 04 + 0
5¢0 — eiankdq+intp Ze—imﬁ¢0(nq _ TTL) +ce.
eifndeq inp+i r im
0px = ( o1 [ n0dg ) e ;eﬂF Yor(ng —m) +ce.
8¢, = eiszdrgbz +cc. (2)
where(r, ¢, J) are toroidal coordinates, and an analogue decomposition is assumed for fluctu-

ating parallel vector potentials. Herg, is the eikonal describing the radial structure of the drift
wave radial envelope angis the safety factor. Thus, Eq. (1) suggests that zonal fields may be



actually considered as radial modulations of the drift wave envelope, whiletthenodes are
simply upper and lower sidebands due to zonal fields modulations of the drift wave [9]. Fur-
thermore, we have adopted the convention that, in the expressions involviagdidebands,

the first row in a two component array will refer to thewhile the second row will refer to the

— sideband. The same notation will be used throughout.

We first derive nonlinear equations for zonal fields from the quasineutrality condition and par-
allel Ampere’s law. Here, we just report the final results of such derivations in the small ion
Larmor radius ;) limit: details will be given elsewhere. Contrary to the electrostatic limit,
where the electron response toragt 0 perturbation is adiabatic and, thus, only ions contribute
to the nonlinear dynamics, electron nonlinearities are important in the general electromagnetic
case. Assuming? p?. < 1, the nonlinear coupling coefficients are formally of the Hasegawa-
Mima type and the quasineutrality condition reads:
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Here, we have introduced the notatiops ~ 1.6¢%¢~/2k2p2, [11], g = 1 + P10/ (neddy),

b - Vi = —(1/c)0,6 A, o indicates the symmetric Fourier Transform into ballooning space
of ¢o in EQ. (1) and similar notations are used for the other scalar fields. Furthermore, we have
omitted for simplicity collisional damping aof¢, [12], ({...)) stands for integration over bal-
looning spacejk; |*((|¥o|?)) = ((|89Wo/qRo|?)), ¢ is the “angle-like” coordinate in ballooning
space, andl, andA.. indicate the amplitude of radial envelopes of the drift wave and sidebands
at the current radial position. Similarly, from the parallel Aengys law we obtain
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Here, the presence ¢6f = (:2/%%6 is a consequence of the strong shielding effect of parallel
electron current on the electron collisionless skin depth. Furthermoréonted response in

dA), has been neglected since it is of order, /wo)(k,/k1)/(1 — wiao/kfv}) with respect

to the spontaneously excited component of Eq. (3). A direct comparison of Egs. (2) and (3)
indicates that both zonal fields may be spontaneously excited exceppfoeashear Alfen

wave for which w2 = kﬁvi, ap = 1 and®, = U,. In general, however, zonal flows can

be efficiently excited via¢,, whereas zonal currents (or poloidal magnetic fields) are strongly
reduced because of electron shielding on scale lengths largér tNeé also note that, typically,
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which will make it possible to neglect the effectod |, below.

The drift wave nonlinear equations are the quasineutrality condition

ne2
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and the vorticity equation

2 7.2
Bo, (kﬁi 8@5¢k> + Wk

B U?A bl

<1 - w*m> (1 =To(bi)) — w;Tibi(FO(bi) = T'1(bi))| 00

w

47 _ b (k' x Kk
= g Z<€WWdJO5H>k + %at (5AH’ICIV3-5AW€N)]€
Am ¢ " / / " —_—
+§at<€§b ' (kJ_ X kj_)(JO(’Y)JO(’Y) — JO(’}/ ))5Lk’5Hlk”>k . (5)

In Egs. (4) and (5), the subscriptstands for0 or + depending on whether the drift wave
or its sidebands are considered, simple angular bracketsdenote velocity space integra-
tion, v = kyv, /ws, Jo is the Bessel function of zero orded, = b - V, b, = k?p?2,,
Loa(bi) = loa(bi)exp(—b;), wan; andw,p; are the ion diamagnetic frequencies associated
with - respectively - density and temperature gradients,s the magnetic drift frequency,

k =k + k', 0Ly = 6¢ — (v)/c)6 A, and the fluctuating particle distribution functions have
been decomposed in adiabatic and nonadiabatic responses as

e 19) ) —
0F = E&bav—wﬂ) + szexp(_lkL v X b/w.)0Hy, . (6)

The nonadiabatic response of the particle distribution functiéh, is obtained from the non-
linear gyrokinetic equation [8]:
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In Eq. (7), the linear response @ F, and the “generalizedE x B nonlinearity (in the guiding
center moving framé¢ — d¢ — (v /c)dA|) are readily recognized.

Equations (4) and (5) are further simplified when we decompose the linear particle response to
the fluctuating fields as [13]:
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where thedlinearizedgyrokinetic equation fob K is readily derived from Eq. (7) and may be
found in Ref. [13]. It is then readily shown that the quasineutrality condition, Eq. (4), can be
cast into the form
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Whereﬁi\m indicates the nonlinear nonadiabatic electron response only, which vanishes in the
electrostatic limit, as stated above.



Assuming, nowk? p?. < 1, consistently with Egs. (2) and (3), and introducing the notation
0K = 0K 4(8¢ — 0v)) + 6K 00 (10)
Egs. (5) and (9) for the sidebands in the ballooning space can be rewritten as:
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Equations (2), (11) and (12), together with Eq. (7) are the basis for our analytic investigations
described in the next section.

3. Some Applications

In the electrostatic limit [9]¥, — 0, we obtain from Eq. (11)

e, A
DSiAi:iﬂg?kﬁkzwz«w?»( Ag) , (13)
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and [9] Dgy ~ i(@Dsm/@wo)(—iA +I',+ ’)/d), A= (kz2/2) (82D50T/8kf)/(8D50T/8w0) is the
frequency mismatchk, = nq¢'6;, I', = —iw, and~y is the sideband damping [9]. Substituting
Eq. (13) into Eq. (2), we readily obtain a nonlinear dispersion relatiol forwhich,in the
|A] < g, var limit, reads

where

1/2
T, = —v/2+ (v +72/4) (15)

wherev?, = (2ape'/2/1.6¢%)(T;/T.) (wodDsor /Owo) ~ k2 p2 k202, ({|e Ag®o/T;|?)). Including
finite zonal flow collisional damping into Eq. (2}, ~ (1.5¢7;)~! [12], would have produced
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FIG. 1. : From Ref. [9]. (A) Analytic prediction of zonal flow growth rate (normalized to the linear one
7o) VS. mode amplitude (solid line) compared with gyrokinetic simulation results. (B) Zonal flow growth
rate vs.0y = k,/nq’, for fixed mode amplitude.

a threshold condition?, > 1,7, on the modulational instability growth rate, of Eq. (15).
In FIG. 1, T', as obtained from Eq. (15) is shown to be in good agreement with the results
obtained by direct 3D gyrokinetic simulations [9] of ITG modes, in which~ 1.5v, %

being the linear growth rate of the mode. Nonlinear equations for mode amplitudes have been
recently derived [9] and they demonstrate saturation of the linearly unstable modes via coupling
to the stable envelope sidebands and oscillatory behaviors in the drift-wave intensity and zonal

flows [9].
For electromagnetic modes, and more specifically for étiec-type waves, we typically have

|y — o] < |Wo| in Egs. (11) and (12). In fact, assumikgy®Rj < 1 [6], we have from
Eq. (11)
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where we recall thaﬁfﬁ, in the present treatment, stands for an operator in the ballooning space.
Substituting back into Eq. (12), this yields [6]
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Equation (17) can be cast into the form
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From Eq. (19) and Eq. (2), itis possible to derive the nonlinear dispersion relatibp, feimilar
to the electrostatic case. Specifically, using_ = D7, , we obtain:
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It is straightforward to further specialize Eqg. (20) to the case of KAW, for whith =
—*Re K} + (W /w}) (1 = K3 p7,(3/4 + T./T;)). In this casey, = 1, and defining
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we obtain
Uoxaw = Auy 1 —A2/33, . (22)

From Egs. (21) and (22) we see that zonal flows can be spontaneously excited by KAW'’s and
that, as in the electrostatic case, the growth igtebove threshold scales linearly with the
wave amplitude. However, the most important feature of KAW'’s is that they spontaneously
generate zonal flows in their propagating regionfor< (3/4)T; and in their cut-off region for

Te > (3/4)T;

Another application of Eq. (20) is to AITG modes [6]. In this case, sufficiently close to the
unstableAlfven continuum accumulation poin®,, = A% + iA6W;, wheredW; is the MHD
potential energy associated with the mode AAds a generalized inertia given by
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and the functions" (), G(x), N(x) andD(x) with z = w/wy;, wi = V2vm:/(qRo), and using
the plasma dispersion functidf(x), are defined as [6, 14]
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the zonal flow growth rate induced by AITG is:

Uyarre = ymy1 — A2/32, (26)

As in the case of KAW, we find a condition for effective excitation of zonal flow by AITG, i.e.,
wo > wspi, Which is the typical case for slightly unstable AITG [14]. Above threshold, also
AITG driven zonal flow growth rate scales linearly with the mode amplitude.

4. Conclusions

In the present work, we have demonstrated that zonal flows may be spontaneously generated by
a variety of drift and drift-Alf\én turbulences and, above thgontaneous excitatiadhreshold,

their growth rate typically scales linearly with the mode amplitudes. In the electrostatic limit,
good agreement is shown between numerical results from 3D gyrokinetic simulations of ITG
and the obtained analytic expression [9]. In the same limit, nonlinear equations for mode am-
plitudes have been recently derived [9] and they demonstrate saturation of the linearly unstable
modes via coupling to the stable envelope sidebands and, as a consequence, oscillatory behav-
iors in the drift-wave intensity and zonal flows [9]. Similar behaviors can also be expected in
the general electromagnetic case, which will be analyzed in the near future.
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