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Abstract. This paper summarises a number of distinct, but related, pieces of work on key con�nement

issues for tokamaks, in particular the formation of internal and edge transport barriers, both within

turbulent and neoclassical models, and radial di�usion of avalanching runaway electrons. First-principle

simulations of tokamak turbulence and transport using the two-
uid, electromagnetic, global code CUTIE

are described. The code has demonstrated the spontaneous formation of internal transport barriers near

mode rational surfaces, in qualitative agreement with observations on JET and RTP. The theory of

neoclassical transport in an impure, toroidal plasma has been extended to allow for steeper pressure

and temperature gradients than are usually considered, and is then found to become nonlinear under

conditions typical of the tokamak edge. For instance, the particle 
ux is found to be a nonmonotonic

function of the gradients, thus allowing for a bifurcation in the ion particle 
ux. Finally, it is shown that

radial di�usion caused by magnetic 
uctuations can e�ectively suppress avalanches of runaway electrons

if the 
uctuation amplitude exceeds ÆB=B � 10�3.

1. Introduction

Transport processes control the con�nement of plasma species. Often it is desirable that
the transport should be as low as possible to improve tokamak performance. Of particular
interest are the conditions for the creation of transport barriers: both internal ones (ITBs)
and the edge ones associated with the L-H transition. In Section 2 we describe global
computer simulations of tokamak transport that lead naturally to ITB formation. In
H-mode a region of steep edge gradients is produced; in Section 3 we revisit neoclassical
theory in these circumstances, showing how it predicts bifurcated particle 
uxes, which
perhaps could trigger the transition itself. However, on occasion substantial transport
can be bene�cial and in Section 4 we determine the lower limit on magnetic turbulence to
prevent the formation of potentially damaging avalanches of runaway electrons in large
tokamaks.

2. Computational studies of internal transport barriers (ITBs) using CUTIE

Recent tokamak con�nement experiments (see, e.g., the review by Bell et al [1]) have
exhibited the spontaneous formation of ITBs. The study of such structures is believed
to be of considerable importance to fusion plasma physics, since they may o�er routes
to enhanced con�nement regimes. Both neutral beam-heated (eg. JET [2]) and ECH



heated (eg. RTP [3]) discharges exhibit transport barriers. Results obtained using a
computational approach to the study of ITBs (with special reference to JET [2]) based
on the CUTIE code help one to understand their nature and the conditions for their
formation.
The transport barriers are modelled by global (ie, `whole tokamak', as opposed to
`
ux tube'), nonlinear, electromagnetic, two-
uid simulations using CUTIE. CUTIE self-
consistently calculates turbulence-driven 
ows in the large aspect ratio approximation.
The equations of motion (given in full in Ref [4]) are obtained using quasi-neutrality,
electron continuity, ion and electron momentum and energy balances, and Maxwell's
equations. For simplicity, the equilibrium magnetic surfaces are taken to be circular, ne-
glecting the Shafranov shift. Fourier analysis of the variables solved (electron density, the
two temperatures, ion parallel velocity, the electrostatic potential, the potential vorticity
and the poloidal magnetic 
ux function) with respect to the poloidal angle � and the
toroidal angle �, leads to coupled nonlinear partial di�erential equations for the `equi-
librium pro�le' components independent of angle and the `
uctuations' which do depend
on the angular variables. The former are directly driven by the imposed sources of par-
ticles, energy (ohmic and auxiliary heating), current etc. Their gradients in turn drive
instabilities which create the 
uctuations and these can react back on the evolution of the
equilibrium quantities through the medium of turbulent 
uxes, over and above the basic
neoclassical ones. The equations include, within the two-
uid model, physical e�ects such
as visco-resistive tearing, ballooning, drift-Alfv�en and ITG modes.
A key feature of the code is the simultaneous or `co-evolution' of the turbulence and the
equilibrium quantities. It turns out that the turbulent 
uxes, although averaged over
angles, are relatively rapidly varying functions of the radius and time. This feature is
characteristic of `mesoscale' turbulence: namely the space and time scales associated with
it are intermediate between the system size and the ion Larmor radius, and con�nement
time and the shear Alfv�en time, respectively. Such relatively rapid variations imply `cor-
rugations' in the equilibrium pro�les. These are regions of relatively high local radial
gradients and curvature in the radial pro�le quantities, which evolve rapidly compared
with the con�nement time. Internal transport barriers (ITBs) are special cases of such
localized regions of high radial gradients, when they occur in the temperature or the
density pro�les, associated with relatively slow time-evolution.
In general, in our simulations, we �nd the low mode number part of the 
uctuation
spectrum is excited through an inverse cascade, even if one starts with high mode numbers.
These relatively long wavelength modes are associated with low order rational values of the
safety factor, q, and play a key role in the tendency of the system to `self-organize' [5], by
spontaneously forming structures like ITBs. Firstly, they generate �ne-scale, intermittent
turbulence through nonlinear and toroidal mode couplings and secondary instabilities
(direct cascade). Secondly, they imply corrugated 
uxes due to fast radial variation in
amplitude, and nonlinear, dissipative, cross-phase relations. These 
uxes react on pro�les
and determine the local gradients of both magnetic and electric �elds, which in turn,
drive/damp the turbulence in a relaxation process. In general, two feed-back loops have
been identi�ed, associated with the radial electric �eld, Er0(r; t), and the plasma current
density, j0(r; t), respectively. The resulting nonlinear dynamics involves complex mode
rotation, current �laments, internal mode-locking, relaxation oscillations, avalanches, and
intermittent bursts of high k; ! turbulence.
To illustrate how this dynamic process works, we present the `equilibrium' poloidal mag-



netic �eld, poloidal 
uid velocity and the radial electric �eld evolution equations [4]:
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Note that the poloidal magnetic �eld evolution is in
uenced both by neoclassical resistivity
�nc(itself a complicated function of temperature, q etc), and more importantly, by jbs, the
bootstrap current. Since the latter depends strongly on gradients, the evolution of q is
in
uenced by the turbulence through it. In principle, there ought to be other `turbulence-
driven' dynamo terms in Eq (1). Their e�ect is presently being studied and will be
reported elsewhere. Equation(2) describes, within certain approximations, the dynamics
of v�0(r; t), the `poloidal' 
uid 
ow. This is driven by radial turbulent advection of poloidal
momentum (also called the `Reynolds stress') and the turbulent j�B force in the poloidal
direction, averaged with respect to angles. The 
ows are damped by neoclassical e�ects:
where �nc = 0:67��1��1i and v�nc = �1:17(1� 1:46�1=2)(cT 0i0=eB), with � = r=R [6]. Thus
the radial electric �eld, Er0(r; t), given by Eq (3), can acquire `corrugations' both from
such features in the ion pressure pro�le and the toroidal velocity. The latter must also
be calculated in principle from a suitable momentum balance equation involving external
sources and turbulent and neoclassical viscous damping. In present simulations, we simply
assume that the toroidal 
ow is speci�ed in terms of the Mach number and use the above
equations to calculate v�0 and Er0.

Figure 1: Calculated �cEr0=B pro�les
(cm/s).

Figure 2: Current 
uctuations.

In Figs 1-3 we show some typical results obtained using CUTIE, obtained from a high
resolution (100 � 64 � 32 in r; �; � respectively) simulation of a JET-like shot (based on
#49006: Paux ' 15MW, Ip ' 2:3MA, �n ' 1:5�1019 m�3, q0 ' 2:2; toroidal Mach number
' 0:3). Figure 1 presents the calculated E�B 
ow pro�le after 1.5 ms of evolution from



simple Gaussian initial temperature and density pro�les. The solution takes into account
Eq (3) among others. It clearly shows highly `corrugated', mesoscale sheared regions with
strong `jet-like' features. These in
uence the stability of the turbulence in their immediate
vicinity. Figure 2 illustrates an instantaneous snap-shot of the computed current density

uctuations, revealing current �laments, `streamers' (m=7 and higher harmonics, associ-
ated with the broad jet around r=a ' 0:4) and ballooning micro-turbulence involving an
8/3 resonance, close to the regions of strongly sheared E � B 
ow(r=a ' 0:8). Movies
made of the simulations reveal quite complex dynamical features associated with the ro-
tation/evolution of the turbulent current �laments. Additional information relating to
other quantities of interest such as the turbulent velocities can be found in Ref [4]. Figure
3a shows the calculated ion temperature pro�le at the same time as Figs 1 and 2. The
barriers at r=a ' 0:6 and 0.8 are rather clear. The former is associated with a relatively
small jet (Fig 1) whilst the latter with a more prominent one further out. The broad jet
near r=a ' 0:3 is associated with a weaker barrier. Qualitatively the code captures barrier
features in the experimental pro�le (obtained using charge exchange spectroscopy) shown
in Fig 3b. The theoretical and experimental uncertainties preclude using the code as a
predictive tool at present; its value is in indicating qualitatively how the turbulence and
equilibrium interact and can evolve to generate transport barriers.
Detailed studies [4] have also been made of the RTP experiment [3], and results suggest
that the model captures the main features of the observed barrier phenomena (role of
rational surfaces, current �lamentation, E �B 
ow-shear e�ects), at least qualitatively.

(a) (b)

Figure 3: Calculated (a), and experimental (b) Ti (keV) pro�les (JET #49006)

3. Nonlinear neoclassical transport in steep plasma edge pro�les

In the H-mode pedestal region near the tokamak edge, the density and temperature pro-
�les are frequently observed to be too steep for conventional neoclassical theory to be
valid. The essential diÆculty lies in the use of the expansion parameter Æ � ��=L?; where
�� is the poloidal ion gyroradius and L? the radial scale length of the density and tem-
perature pro�les. Neoclassical theory requires Æ � 1, and it is fundamentally diÆcult to
construct a tractable transport theory when Æ = O(1) since the plasma is then not in local
thermodynamic equilibrium. When Æ is in�nitesimally small all plasma parameters are
approximately constant on 
ux surfaces, but when Æ is made larger poloidal asymmetries



become possible. Typically the �rst plasma parameter to develop a poloidal variation
is the density, nz(�), of highly charged impurity ions [7], whose poloidal modulation is
~nz=nz � � � Æ�̂iiz

2, where �̂ii � Lk=�ii is the collisionality, with �ii the mean-free path for
the bulk ions and Lk the connection length. In the tokamak edge, � can easily be of order
unity while Æ remains small, Æ � 1; � = O(1). In the present work we adopt this order-
ing [7,8,9], which is less restrictive than conventional neoclassical theory (which assumes
�� 1), thus enabling a non-uniform distribution of impurities over each 
ux surface. For
simplicity, we restrict our attention to the case of a hydrogen plasma with a single species
of highly charged (z � 1) impurity ions of appreciable density, Ze��1 = nzz

2=ni = O(1).
The electrons (e) and H ions (i) are taken to be collisionless while the impurities are as-
sumed to be collisional. We also allow for toroidal plasma rotation to produce a poloidal
impurity density asymmetry. The impurity Mach number is taken to be of order unity,
M2

z = mz!
2R2=2Ti = O(1), where ! denotes the angular rotation frequency, so that the

main (H) ion Mach number is small, M2
i = (mi=mz)M

2
z � 1.

The bulk-ion distribution function is obtained by solving the drift-kinetic equation in
the banana regime in a conventional way, and is then used to calculate the friction force
on the impurities in the parallel impurity momentum equation. When combined with
the continuity equation and the requirement of quasineutrality, this gives the following
equation for the normalised impurity density n = nz= hnzi [9],
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where � � hZe� � 1iTe=(Te + Ti), b � B= hB2i
1=2
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denotes an average over #. The two most important control parameters in Eq (4) are
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which measure the steepness of the plasma pro�le and the toroidal rotation speed, respec-
tively. The ion-impurity collision time is denoted by �iz = 3(2�)3=2�20m

1=2
i T

3=2
i =nzz

2e4 ln�.
The remaining parameter, 
, that appears in Eq (4) is of order unity and does not play
an important role in the theory.
The impurities are pushed toward the inboard side of the torus when g becomes large, and
the neoclassical transport then becomes a strongly nonlinear function of the gradients. On
the other hand, when the toroidal rotation is so large thatM>

�1, the impurities are pushed
to the outside of the torus by the centrifugal force, and this also a�ects the transport. In
a plasma with small inverse aspect ratio, �� 1, and circular cross section, Eq (4) can be
solved by making the expansions b2 = 1�2� cos �+O(�2); n = 1+nc cos �+ns sin �+O(�

2);
M2 =M2

0 (1+2� cos �)+O(�2): The classical and neoclassical particle 
uxes then become
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where the �rst term is the classical 
ux and the second term, which contains the factor
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represents the neoclassical 
ux. The latter exceeds the former by the P�rsch-Schl�uter
factor 2q2 when the gradients and the rotation are weak, g � 1 and M2

0 � 1. When
either g or M0 is not small, new and potentially important e�ects emerge.
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Figure 4: Ion particle 
uxes versus normalized gradient g in a large-aspect-ratio tokamak
with circular cross section, � � 1, � = 0:5. The dashed line is the classical 
ux, the
dotted lines are neoclassical 
uxes, and the solid lines represent the sum of classical and
neoclassical 
uxes. The lower pair of dotted and solid lines are for vanishing toroidal
rotation, M2

0 = 0, and the upper pair for impurity Mach number M2
0 = 1.

First, if the gradients are weak but the rotation is signi�cant, i.e., if g � 1 andM0 = O(1),
the neoclassical 
ux is increased by the factor � in Eq (6) over the usual P�rsch-Schl�uter
result. The di�usion coeÆcient thus becomes D = (1+2�q2)Dcl, where Dcl = Ti=mi


2
i �iz

is the classical di�usion coeÆcient and 2q2Dcl the P�rsch-Schl�uter di�usion coeÆcient.
The enhancement factor � can be quite large ifM0 exceeds unity, as is frequently the case
for heavy impurities. The second conclusion to draw from Eq (5) is that if the pressure or
temperature gradient becomes suÆciently steep (g � 1) the neoclassical 
ux is suppressed
since the denominator in the second term of Eq (5) depends quadratically on g. Classical
transport then dominates, and the total 
ux is a non-monotonic function of the gradients
[8]. Figure 5 shows the particle 
uxes as functions of g. Conventional transport theory
only treats the lower left corner of this �gure, where the 
ux is proportional to the gradient.
Note that the total 
ux (solid lines) depends on the gradients in a way characteristic of
bifurcating systems.
We now consider the limit g � 1, where the neoclassical transport tends to be suppressed.
Expanding the solution of Eq (4) in g�1 gives
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indicating that the impurities are pushed toward the inboard side of the torus. The
neoclassical cross-�eld particle 
ux now becomes
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This 
ux vanishes unless the rotation is �nite and the equilibrium is up-down asymmetric.
The residual transport, which for instance could occur in a steep edge transport barrier,



has a number of surprising properties. It can be either inward or outward, and it depends
on the geometry of the magnetic �eld in a non-trivial way. For instance, in the particularly
simple limit 
 � 1, �� 1, nzz

2 � ni, the 
ux becomes

h�neo � r i = 0:33
fcI hpzi

e hB2i2
�
d lnni

d lnTi
� 1

2

� DB2B � rM2
E

and is thus independent of the collision frequency although it is caused by Coulomb
collisions. Remarkably, it is proportional to I = RB� and therefore changes sign if the
toroidal �eld is reversed. If the density pro�le is at least half as steep as the temperature
pro�le, which is normally the case in the tokamak edge, and the magnetic �eld has a single
X-point below the midplane, the 
ux is inward if B �rB is downward, and vice versa.
Thus, if the ion rB-drift is toward the X-point, which is experimentally favourable for
attaining the high-con�nement H-mode, the neoclassical bulk-ion particle 
ux is inward,
and the impurities (whose 
ux is opposite to that of the main ions) are prevented from
entering the plasma core.

4. Suppression of runaway avalanches by radial di�usion

Runaway electrons are frequently generated in tokamak disruptions. In future, large toka-
maks it is thought that close Coulomb collisions between thermal electrons and existing
runaways can lead to catastrophic exponential multiplication of the latter { a so-called
runaway avalanche. The existing theory of this process [10] assumes that there is no loss
of runaway electrons. In practice, these particles undergo radial transport due to mag-
netic 
uctuations and are thus imperfectly con�ned. We have calculated the reduction
of the avalanche growth rate that this causes, both by an analytical approximation and
by three-dimensional Monte Carlo simulation of the avalanche kinetics in full toroidal
geometry [11].
As a runaway electron is accelerated by the electric �eld, the di�usion coeÆcient
D(p) decreases progressively with increasing (relativistic) parallel momentum p = (1 �
v2=c2)�1=2mevk. By solving the kinetic equation for di�using runaway electrons generated
by close collisions, we have derived an approximate formula for the avalanche growth rate
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where 
r is the growth rate calculated in Ref 10 in the absence of di�usion, a the minor ra-
dius, � = 4��20m

2
ec

3=nee
4 ln� the collision time for relativistic electrons, and Ec = mec=e�

the critical �eld for runaway production. We have also developed a 3D Monte Carlo code,
Arena, that simulates runaway avalanches in toroidal geometry and includes the e�ects
of collisions, radial di�usion, synchrotron radiation reaction, and a self-consistently in-
duced electric �eld. The numerically calculated growth rate agrees with the analytical
result given here, see Fig 5. Thus, the avalanche growth rate becomes very small when
stong radial di�usion is present. As the poloidal magnetic 
ux that is available to induce
an electric �eld is �nite, avalanches are prevented altogether by suÆciently strong radial
di�usion. The requisite magnetic 
uctuation level is sensitive to the mode structure and
the speed of the disruption, and can be estimated to be around ÆB=B � 10�3 for JET
and ITER-like parameters. Thus, it appears possible that the naturally occurring, or any
externally induced, magnetic 
uctuations could signi�cantly reduce the size of secondary
runaway avalanches [12].
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Figure 5: The normalized growth rate 
� vs �p for the di�usion coeÆcient D(p) =
D0e

�(p=mec�p)2, with D0 = R2=� , a=R = 0:31, and Ze� = 1:5. The solid line shows the
result from the numerical simulation, and the dotted line the analytical approximation (7).

5. Conclusions

The CUTIE global simulation code has demonstrated how the interaction of turbulence
with the evolution of the equilibrium can lead to the spontaneous formation of ITBs near
rational surfaces, in qualitative agreement with JET and RTP. When steep gradients
form as turbulence is suppressed near the plasma edge residual collisional particle 
uxes
(appropriately modi�ed for steep gradients) exhibit interesting features: a bifurcation to
low 
uxes; the direction of the 
ux is a�ected by the position of an X-point, so that if the
ion-rB-drift is towards the X-point impurities are screened from the core; and impurities
are redistributed poloidally in a way that should be experimentally detectable. Finally,
it has been shown that magnetic turbulence with ÆB=B � 10�3 can suppress runaway
avalanches in large tokamaks.
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