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Abstract A self-consistent theory for the role of the polarisation current in magnetic island evolution is
presented, which suggests that it can, under certain circumstances, provide a threshold island width for growth
of neoclassical tearing modes. However, at high β coupling to an unstable resistive wall mode (RWM) removes
this threshold, and would limit the achievable plasma pressure. Techniques for stabilising the RWM using a
rotating ‘shell’ are described, thus providing the possibility of high β operation.

1. Introduction

There is much evidence from existing tokamak data to suggest that the effective pressure
limit in tokamaks is set not by ideal magneto-hydrodynamic (MHD) instabilities, but by
more slowly growing instabilities such as the resistive wall mode (RWM) and the
neoclassical tearing mode (NTM). This paper describes a theoretical investigation to develop
further our understanding of the onset conditions for these instabilities, as well as their
interaction. In the following section we consider whether or not the polarisation current
generated by a small-scale ‘seed’ magnetic island can provide a threshold for the growth of
the neoclassical tearing mode. Within the theoretical model which we develop, we find that
there is a parameter regime for which the polarisation current stabilises small magnetic
islands, and this appears to be consistent with experimental observations. In Section 3 we
address the coupling between a RWM and a NTM. We find that the effect of the RWM is to
remove the threshold for growth of the NTM, suggesting that such instabilities may be
prevalent in high β, steady state tokamaks unless the RWM can be controlled. In Section 4
we describe two possible techniques for stabilising the RWM by faking a rotating shell
surrounding the plasma, using a system of magnetic coils or a flowing lithium blanket, for
example. We close in Section 5 with a summary.

2. Neoclassical Tearing Mode Threshold

Experimentally it is observed that a neoclassical tearing mode grows provided an initial
‘seed’ island (eg from another MHD event) has a width larger than some threshold value.
Such a threshold is predicted from the so-called polarisation model which reproduces several
of the experimentally observed scalings for the threshold (eg with Larmor radius, collision
frequency, etc) [1]. The model is based upon theories which predict that the polarisation
current associated with small scale magnetic islands is stabilising. However, it has recently
been noted that these theories omit a potentially important destabilising contribution to the
polarisation current, which originates from a narrow layer in the vicinity of the island
separatrix [2].  Here we perform calculations which self-consistently include this ‘layer’
contribution, and identify the conditions for which the polarisation current is stabilising, in
which case it can provide a threshold to neoclassical tearing modes.

We illustrate the essential features of the physics by first considering a fluid model, valid in
the limit that the ratio of ion and electron temperatures Ti/Te<<1. We shall find that the
separatrix layer is of width ~ρs, which is the ion Larmor radius calculated with the electron



temperature, so that the finite ion Larmor radius effects can be treated perturbatively. The
system of equations which we then solve are the electron continuity equation, charge
conservation (∇ ·J=0), Ohm’s law and energy balance:
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Here we have defined: the plasma density, n (equal for ions and electrons); the electron
temperature, T; the cross-field ambipolar particle diffusion coefficient, D; the Alfvén
velocity, vA; the vorticity U=∇ ⊥

2φ, where φ is the electrostatic potential; the perpendicular
viscosity µ; the parallel electric field, E||; the pressure, p; the electron charge, e; the parallel
electrical conductivity, σ||; and the parallel and perpendicular thermal heat diffusivities, κ||
and κ⊥ , respectively.  Finally, the convective time derivative, D/Dt, includes the E×B flow
and k=0.71 is a coefficient describing the effect of the thermal force.

Neglecting the dissipation terms (ie those associated with viscosity, radial diffusion,
resistivity, etc) and working in a sheared slab approximation to the true tokamak geometry,
we can simplify Eqs (1)-(4) analytically, working in the frame of reference where the island
is at rest.  First, the parallel heat conduction dominates in Eq (4), so we have T=T(Ω), where
Ω is a flux surface quantity, defined in terms of the radial coordinate x=(r−rs) (r is the minor
radius, r=rs is the position of the rational surface) and the helical angle ξ=θ-(n/m)ζ (θ and ζ
are the poloidal and toroidal angles, respectively, and m and n are the poloidal and toroidal
mode numbers):

ξcos2 2

2
−=Ω

w
x (5)

with w the island half-width. Ohm’s law can then be simplified and integrated to yield an
expression for the density perturbation δn caused by the island:

( )Ω+= Hn ϕδ (6)
where H(Ω) is a free function arising from the integration along field lines and ϕ is the
dimensionless electrostatic potential, ϕ=eφ/T.  Finally, we eliminate J|| from Eqs (1) and (2),
and integrate along lines of constant ϕ, using Eq (6) to derive:

( ) ( )Ω=−∇ ⊥ HKs ϕϕρ 22 (7)
where K(ϕ) is an arbitrary function of the integration, related to the flow profile.  To close
the set of equations, we integrate the charge conservation equation (2) to determine the
polarisation current in terms of ϕ, and then use this result in Ampère’s law to derive how the
polarisation current affects the island evolution. Thus we find that we can write

pol∆+∆′∝ sdt
dw (8)

where ∆′s represents the free energy available in the equilibrium current profile, and ∆pol is
the contribution to the free energy from the polarisation current:
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Here ω is the mode frequency in the E×B rest frame, ω*i is the ion diamagnetic drift
frequency (negligible in this cold ion model but, as we  shall see later, it will be important),
kθ is the poloidal wavenumber, and the coefficient g is:
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Angled brackets represent the average over flux surfaces which annihilates the ∇ || operator.

Clearly, the effect of the polarisation current on magnetic island evolution depends only on
g, which in turn depends on the solution of Eq (7) for ϕ. Thus, to proceed we require forms
for H(Ω) and K(ϕ), and these are derived from transport equations. These transport equations
are constraint equations which are determined from the higher order dissipation terms in Eqs
(1)-(4). We do not present a detailed derivation of these here, but merely quote the results,
and refer the interested reader to Ref [3]. The mode frequency ω is determined in [3], and
depends on the parameter ηe, which is the ratio of density to temperature gradient length
scales; it is therefore appropriate at this level of discussion to treat ω as a free parameter. A
constraint equation which determines H(Ω) has its origins in the electron continuity
equation; this leads us to adopt the form
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where Θ is the step function. The ion continuity equation arises from eliminating J|| from Eqs
(1) and (2). The leading order terms can then be annihilated by averaging along lines of
constant ϕ to give the result:
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with the integral taken at constant ϕ. Thus our aim is to solve Eqs (7) and (12)
simultaneously to derive K(ϕ) and ϕ, and then to use the result in Eq (10) to calculate g and
so determine the role of the polarisation current in tearing mode evolution. Before we
describe the solutions, there are two points we should like to draw attention to regarding this
system of equations. First, consider Eq (7) far from the island, where K(ϕ) is matched to its
linear form; thus K=(1-ω*e/ω)ϕ, representing the sum of the electron adiabatic response and
long wavelength electron drift wave ion response. For 0<ω<ω*e the solutions for ϕ are then
oscillatory due to a strong coupling to the electron drift wave: such solutions would be
subject to ‘shear’ damping, and would be relatively extended over the long radial length
scale associated with the ion Landau resonance position, rather than the much shorter island
width scale. For other propagation frequency regimes the solutions are localised on the
length scale associated with w; we concentrate on these. A second interesting feature can be
illustrated by considering Eq (12). In the presence of viscosity, one might expect the
viscosity to remove perturbations with short radial wavelengths so that no localised isolated
magnetic island solutions could exist. However, Eq (12) shows that it is not just the viscous
forces which determine the profile of ϕ (or, equivalently, the flow profile), but also the
friction forces associated with electron-ion collisions (embodied in the ambipolar diffusion
coefficient, D) are important. One can then show that the solutions for ϕ are localised around
the island on a length scale ~√(µ/D)ρs (>>ρi, justifying our fluid treatment).

In Fig 1a we show the form for g which arises from the solution to Eqs (7), (10) and (12). In
this calculation, which treats small magnetic islands more self-consistently than any previous



calculation, we see that g>0 for cold ions. From Eq (9) we therefore expect the polarisation
current to be stabilising provided the island propagates in the ion direction, ω*i<ω<0. This
frequency regime is only significant for finite ion temperature, and the fluid model we have
described here cannot be used to calculate g in that case (ie, when ρs~ρi): a full gyro-kinetic
model for the ions is required. We have explored this using a model in which the response to
the magnetic perturbations is fully nonlinear, but we approximate the response to the electro-
static perturbations using linear gyro-kinetic theory. We again find that g>0, and the
resulting calculation of ∆pol is shown in Fig 1b.

While it is possible that the results presented here may be sensitive to the magnetic geometry
and the assumptions associated with the perturbative treatment of the radial diffusion
processes, there is some experimental evidence that ‘seed’ magnetic islands are indeed
‘born’ in the frequency range ω*i<ω<0 when our model predicts a stabilising polarisation
current [4]. We therefore take the polarisation current model as providing the threshold to
neoclassical tearing modes in a tokamak, which then evolve according to [1]:
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where β (typically~1) is proportional to the pressure in the plasma, and characterises the
bootstrap current drive for NTMs in a tokamak, τr is proportional to the resistive diffusion
time and wc is the threshold island width associated with the polarisation current threshold.
We now explore the consequences of Eq (14) for pressure-limiting phenomena in tokamaks.

3. NTMs in High ββββ Plasmas.

Equation (14) describes the essential features of NTMs: the ‘Rutherford’ term proportional
to ∆′s, the bootstrap current drive proportional to β, and a threshold associated with the
polarisation current, wc. Taking ∆′s to be constant, and negative, we plot dw/dt versus w in
Fig 2a; note that an initial ‘seed’ island must exceed a critical threshold width to excite the
NTM, which then grows to a large saturated amplitude. Now let us suppose that we are at
sufficiently high β that the plasma would be unstable to ideal MHD modes in the absence of
a perfectly conducting wall. The presence of a partially conducting wall improves the
situation if positioned sufficiently close to the plasma, but nevertheless results in a slowly
growing resistive wall mode. It is then natural to ask whether or not this RWM could provide
the ‘seed’ to trigger the NTM. We address this question in this section, employing a simple
plasma model, which neglects the plasma flow.

FIGURE 1.  (a) Plot of g versus )/(22
es ∗−= ωωωρρ  for µ=D and two values of ρs/w for the

cold ion fluid model. (b) Plot of ∆pol versus ω  for the gyro-kinetic model with Te=Ti.
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The RWM stability properties can be incorporated through the parameter ∆′s. Consider a
situation where there is a resonant surface in the plasma, with an associated jump in the
radial derivative of the logarithm of magnetic potential, ie, ∆′s. At the resistive wall there
will be a second jump in this quantity, which we denote by ∆′w. Now these two quantities are
described by the equations of ideal MHD, and are thus simply related by an equation of the
form [5]:
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where the coefficients ci depend on the specific properties of the tokamak equilibrium. As
we are interested in an RWM, we require the plasma to be unstable in the absence of a wall,
ie when ∆′w→0. In this limit we expect an inertial response at the rational surface, r=rs,
∆′s~ −1/(pτA), where τA is the Alfvén time and here p would be the ideal MHD growth rate,
in the absence of any wall. We parameterise this growth rate, normalised to τA, by ε, ie we
write c2= −ε, where ε is considered to be small and positive close to marginal stability. Thus,
a convenient, simple form for ∆′s, which has the features of a pressure-driven resistive wall
mode in a tokamak, is
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where we have taken ∆′w=γτw, with γ(t) the instantaneous non-linear growth rate (not
exponential growth in general) and τw the resistive wall time, and δ parameterises the
stability of the equilibrium in the presence of a perfectly conducing wall (δ<0 would be
tearing-unstable). We now make the approximation that the time-dependence of the
magnetic flux at the rational surface is the same as that at the wall, and express the rate of
growth of the magnetic island at the rational surface in the form:

( )
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dw

w
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(a factor 2 has been absorbed into δ and ε). Substituting these expressions into the island
evolution equation gives us the following equation, describing coupling between the RWM
and NTM:
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FIGURE 2. Plot of dw/dt for the neoclassical tearing mode, assuming a threshold caused  by the
polarisation current (a); note a finite ‘seed’ island size must be achieved to excite the mode (β=1,
∆′s=-5, wc=0.02). In (b) we consider the same case, but now the plasma is unstable to an RWM;
note how the coupling to the RWM removes the threshold (β=1, δ=5, ε=0.1, τ=0.01 and wc=0.02).
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to be solved for γ, which has been normalised to the plasma resistive time, τr, and we have
introduced τ=τw/τr. We show the results from the solution to this equation in Fig 2b: note that
the RWM is now coupled to the NTM, and there is no threshold.  Initially, for very small
island widths, the mode is essentially a slowly growing RWM.  Once the width reaches the
critical width, wc, the NTM is excited, and the mode grows rapidly to a large amplitude.
This calculation, although simplistic in that it neglects issues associated with the plasma
flow and torque balance, suggests that the most important mode to stabilise in the high β
regimes (ie above the no-wall limit) will be the RWM.  In the following section we describe
two possibilities for stabilising this instability.

4. Resistive Wall Mode Stabilisation

One might envisage that rotating the vessel wall, so that it appears to the plasma to be a
perfect conductor, would stabilise the RWM. Unfortunately, unless rotation speeds are very
high, the RWM simply Doppler shifts to remain locked to the wall rotation, and then there is
no stabilising effect. However, there are two alternative possibilities for stabilising the RWM
based on this idea: (i) to introduce a second conducting wall which rotates relative to the first
so that the mode cannot lock to both [6], and (ii) to have a single wall, but with different
parts of the wall rotating relative to others [7]. We explore these possibilities, concentrating
on the linear stability properties of the RWM.

(i) Secondary rotating wall. This was proposed as a possible technique for stabilising RWMs
in reversed field pinches (RFP) [6]. The tokamak situation is slightly different to that of the
RFP because the RWM then has poloidal harmonics which are resonant inside the plasma,
and this needs to be taken into account. We consider the situation when there is a single
internal resonant surface. Defining the magnetic vector potential, Ψ, this must satisfy jump
conditions at three radial locations: at the resonance r=rs and at each of the two walls r=r1,
r2. We define three matching parameters, ∆′ i: ∆′1 represents the stability when the closest
fitting wall is a perfect conductor; ∆′2 represents the stability when the first wall is absent
and the second wall is a perfect conductor, and ∆′3 represents the stability in the absence of
either wall.  We define the jump in the logarithmic derivative of Ψ at r=rs for the actual
geometry by ∆′s and use Ampère’s law to show that the jump in the logarithmic derivative in
Ψ across either wall is equal to pτi (where p is the complex linear growth rate of the mode in
the wall rest frame, and τi is the time constant associated with the resistivity of each wall,
labelled by i=1, 2 for the first and second walls, respectively). To derive a dispersion relation
for the RWM, we then match across each discontinuity at r=rs, r1, r2 to derive [8]:
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where Ω2 is the toroidal angular rotation velocity of the outer (second) wall in the frame
where the first wall is at rest. We have parameterised ∆′1 and ∆′3 in terms of ε and δ, as
follows (see Section 3). First, we wish to consider the situation when the plasma would be
stable if the first wall were a perfect conductor: this requires ∆′1= −δ, where δ is positive.
Second, we want the plasma to be unstable to an ideal MHD mode when there are no walls
present; thus we write ∆′3= −1/ε, where ε is considered to be small. The two remaining
parameters, X and Y, are defined by X=2m/(1-Y), Y=(r1/r2)2m where m is the poloidal mode
number, and ri is the radius of the ith wall.

To complete the dispersion relation we need to specify a model for the plasma response in
the layer associated with the rational surface at r=rs in the presence of the walls. We choose
a ‘visco-resistive’ response [9], given by
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where τR and τV characterise the layer resistive and viscous times and Ωpl is the plasma
toroidal rotation frequency in the rest frame of the first wall.

We now show numerical solutions of Eqs (19) and (20) for the marginal stability contours as
Ωpl and Ω2 are varied. We fix δ=1, ε=0.1 and τA

1/3τR
5/6/τv

1/6=1. The first situation we consider
is ∆′2 =5, so that the second wall is sufficiently close to the plasma that if it were a perfect
conductor it could stabilise the ideal MHD mode (ie that which would exist in the absence of
walls), but is too far away to stabilise the resistive mode associated with the rational surface
at r=rs. The marginal stability contours, shown in Fig 3a, illustrate that a minimum plasma
rotation and wall rotation must be maintained to stabilise the RWM. The second situation we
consider is that where the second wall is moved still further in so that the resistive mode
would also be stabilised if the wall were a perfect conductor, ie ∆′2= −0.3. In this case, Fig
3b shows that for a sufficiently high wall rotation, plasma rotation is not necessary for
stability. As the position of the second wall approaches that of the first wall, it requires
increasingly more wall rotation to stabilise the RWM. There are two situations when it is
practically impossible to stabilise the plasma by a second, rotating wall.  The first is when
the second wall is so far from the plasma, that it would not be able to stabilise the ideal
MHD mode even if it were perfectly conducting; the second is when the first wall is
sufficiently close to the plasma that if it were a perfect conductor it could stabilise the ideal
MHD mode, but it is not close enough to stabilise the resistive mode.

(ii) Non-uniform wall rotation. We have studied two cases where the flow in a single wall
has a poloidal variation: (a) a toroidal flow which varies as Vsinθ, where θ is the poloidal
angle, and (b) a poloidal flow, with a step function variation. Expanding the magnetic field
perturbation in poloidal Fourier harmonics, bm, where m labels the poloidal harmonics, we
find the following difference equation for the case of toroidal flow by taking the radial
component of the curl of Ohm’s law, and integrating across the wall:
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FIGURE 3. Marginal stability contours for a plasma ideal unstable with no wall, but stable if the
first wall were a perfect conductor; the two cases are for different positions of the second wall, as
described in the text: (a) ∆′2=5, (b) ∆′2= −0.3. Ωpl is the plasma toroidal rotation velocity, Ω2 is
the second wall rotation velocity.
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where VT=nVτw/2R, R is the major radius, p is normalised to τw and κ=δw/a<<1, with δw the
wall thickness. We adopt a model q-profile which has a single, m=2 resonance such that
∆′3=4.89 and all other harmonics except m=2 are negative. Following the procedure which
led to Eq (15) we use our model q-profile to derive ∆′2 for the internal resonance:

p
p

218.0017.0
722.11

2 +
−=∆′ (22)

and solve Eq (21) numerically. The results for the two most unstable eigenvalues are shown
in Fig 4, with a critical flow for stability given by VT≈5. A second case which we have
studied is that of a poloidal flow V with the top half plane rotating in the opposite direction
to the bottom. The relevant dimensionless measure of flow is then Vp=mVτw/2a, and we
again find that the RWM is stabilised when the flow is sufficiently large, Vp≈1. The step
function poloidal flow couples more poloidal harmonics bm, which has an enhanced
stabilising influence.

5. Summary

We have shown in this paper that there is a theoretical basis for the so-called polarisation
model for the NTM threshold, though this does depend crucially on the island propagation
frequency and more work remains to be done for a complete predictive theory. We have also
demonstrated that above the no-wall β-limit the RWM can trigger an NTM (ie there is no
NTM threshold when an RWM is destabilised). Thus, in high performance plasmas it may
be important to control the RWM and we have described two possible techniques for
stabilising this mode.

Acknowledgement: This work was funded in part by the UK DTI and Euratom, and by US
DoE contract numbers DE-FG03-96ER-54346 and DE-FG02-91ER-54109.

REFERENCES
[1] H R Wilson et al, Plas Phys Contr Fusion 38, A149 (1996)
[2] F L Waelbroeck and R Fitzpatrick, Phys Rev Lett 78, 1703 (1997)
[3] J W Connor, F L Waelbroeck and H R Wilson, to be submitted to Phys Plasmas
[4] R J la Haye, et al, this conference, IAEA-CN-77/EXP3/05
[5] A Bondeson and H X Xie, Phys Plasmas 4, 2061 (1997)
[6] C G Gimblett, Plas Phys Contr Fusion 31, 2183 (1989)
[7] J W Connor et al, to appear in ‘Proc of Theory of Fusion Plasmas’, Varenna (2000)
[8] C G Gimblett and R J Hastie, to appear in Phys Plasmas (2000)
[9] R Fitzpatrick, Nucl Fusion 33, 1049 (1993)

VT

p

FIGURE 4. Complex growth rate, p, versus toroidal flow velocity, VT of the vessel, having a
poloidal variation ~sinθ; the full curve is the real part, dashed curves the imaginary part.


