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Abstract. Linear and nonlinear properties of slab drift waves in the negative sheared slab configuration modeling

theqmin-surface region of negative shear tokamaks are studied, whereqmin is the minimum value of a safety factor

q. Linear calculations show that both the slab ion temperature gradient driven (ITG) mode and the slab electron

temperature gradient driven (ETG) mode become strongly unstable around theqmin-surface. Nonlinear simulations

are performed for the ETG turbulence which evolves in a much faster time scale than the ITG turbulence. It

is found that quasi-steadyEr ×B zonal flows are generated by an inverse wave energy cascade process. Linear

stability analyses of the electrostatic Kelvin-Helmholtz (K-H) mode show that the quasi-steadyEr ×B zonal flow

profile is closely related to theq-profile or the magnetic shear, which has a stabilizing effect on the K-H mode.

It is shown that the microscopic quasi-steadyEr ×B zonal flows arising from the ETG turbulence have a strong

stabilizing effect on the slab ITG mode.

1 Introduction

In negative shear tokamaks, the ion thermal diffusivity reduces to the neoclassical level in
the internal transport barrier (ITB) region. In this region, the ion temperature gradient driven
(ITG) mode and the trapped electron mode are considered to be stabilized by theEr ×B shear
flows. Recently, the electron temperature gradient driven (ETG) mode has been proposed as
a candidate for the residual anomalous electron thermal transport in the ITB region [1, 2]. In
understanding the transport properties in the ITB, behavior of drift waves in the negative shear
configuration must be studied. The negative-sheared slab ITG (NS-ITG) mode [3] and the
negative-sheared slab ETG (NS-ETG) mode [4] are analyzed in theqmin-surface region using
a gyrokinetic integral eigenvalue code [3]. These modes are important even in the toroidal
geometry, since a toroidal mode coupling becomes weak around theqmin-surface.

Particularly for the NS-ETG mode, which gives a much larger growth rate than the NS-ITG
mode, nonlinear behavior is addressed using a gyrokinetic particle-in-cell (PIC) code [5]. As a
model for the improved ion confinement, a spontaneous generation of theEr ×B zonal flow in
the ITG turbulence has been reported in a recent work [6]. We have observed a generation of
Er ×B zonal flows also in the ETG turbulence. A stability of theEr ×B zonal flow is discussed
from a point of view of the electrostatic Kelvin-Helmholtz (K-H) instability. Finally, an effect
of the ETG drivenEr ×B zonal flows on the ITG turbulence is addressed.

In Sec. 2, linear properties of the NS-ETG and NS-ITG modes are discussed based on
the eigenmode structure, the growth rate spectrum, and the transport coefficient obtained from
the mixing length estimate. In Sec. 3, a spontaneous generation ofEr ×B zonal flows in a
nonlinear simulation of the NS-ETG mode is shown. In Sec. 4, a linear stability of the K-H
mode is studied for theEr ×B zonal flow observed in the simulation. In Sec. 5, a linear stability
of the NS-ITG mode under the ETG drivenEr ×B zonal flow is given. In Sec. 6, obtained
results are summarized.



2 Linear Stability

In the present study, we consider a sheared slab geometry, where thex-direction corresponds
to the radial direction, thez-direction is chosen in the direction of the magnetic field atx = 0,
and they-direction is chosen to be normal to both thex andz-direction. For such a slab plasma,
we assume the periodic boundary condition in they andz-direction, and the fixed boundary con-
dition with conducting walls in thex-direction. For the negative shear configuration, we choose

the model magnetic configuration asB(x) = B0[z− (x/Lns)2y], whereLns =
√

(2q2
0R)/(q′′0r0),

R is the major radius of a toroidal plasma,r0 is the minor radius corresponding to the position
x = 0, andq0,q′′0 are evaluated at theqmin-surface. Parameters used in the present study are
chosen based on plasma parameters in Tokamak Fusion Test Reactor (TFTR) [7]:R= 2.6m;
r0 = 0.3m; the electron and ion density ¯ne = n̄i ∼ 2×1019m−3; the density gradient param-
eterLn = 0.38m; the electron temperaturēTe ∼ 3.91keV; the ion temperaturēTi = 12.8keV;
the ion Larmor radius̄ρt i = 2.52mm; the electron Larmor radius̄ρte = 0.0325mm; the electron
Debye length̄λDe = 0.104mm; and the background fieldB0 = 4.6T, where ¯· denotes a quantity
averaged over the region of theqmin-surface.The model magnetic configuration is given with
Ls = 2.78m(Ln/Ls = 0.167) for the normal shear case, andLns = 0.883m(Ln/Ls = 0.430) for
the negative shear case.

Figure 1 shows the growth rate spectra and the transport coefficients of the slab ETG and
ITG modes obtained from the gyrokinetic integral eigenvalue code. Analytic solutions show
that the double mode-rational surface (nonresonant) NS-ITG mode becomes a bounded (oscil-
latory) solution which is excited in theqmin-surface region [4]. Their stabilities are basically
determined locally at theqmin-surface, because the magnetic shear is weak in theqmin-surface
region. Since a local stability of the slab mode does not depend on a sign ofk‖, the double mode-
rational surface and nonresonant NS-ITG modes give similar growth rate spectra, provided that
|k‖| is the same at theqmin-surface, wherek‖ = k ·B/|B|. For both the double mode-rational
surface and nonresonant NS-ITG modes, unstableky regions spread overkyρt i ∼ 10, because
the magnetic shear stabilization does not work around theqmin-surface [3]. These modes may
explain a short wavelength ion mode observed in the TFTR enhanced reversed shear experi-
ment [8].

The short wavelength ETG mode shows different feature from the ITG mode, because the
Debye shielding effect becomes important in typical fusion plasma parameters. In a Weber type
differential eigenmode equation which is obtained with retaining the Debye shielding effect,
a term which makes an effective potential has the opposite sign compared with that of the
ITG mode [4]. Hence, types of solutions are exchanged between the ITG and ETG modes.
The double mode-rational surface (nonresonant) NS-ETG mode has an oscillatory (bounded)
solution around theqmin-surface. As in the case of NS-ITG modes, their stabilities are also
determined locally at theqmin-surface. However, their unstableky regions are characterized by
kyλDe ∼ 1, because of the Debye shielding effect. For parameters used in the present analysis,
this unstableky region corresponds tokyρte ∼ 0.3.

The negative sheared slab modes give order of magnitude larger radial correlation lengths
and growth rates than the normal-sheared slab modes. The corresponding mixing length es-
timates give significantly large transport coefficients. In the normal shear case, unstableky

regions of the ITG modekyρt i < 1 and that of the ETG modekyλDe < 1 are separated. On
the other hand, in the negative shear case, their unstable regions overlap each other around
kyρt i ∼ 10 (kyλDe ∼ 0.4). Since the growth rate of the ETG mode is an order of magnitude
larger than that of the ITG mode, effects of the ETG turbulence can not be ignored in consider-
ing the ITG turbulence. Especially in the negative shear tokamaks, non-adiabatic electrons are



considered to play a significant role in a formation of a drift-wave turbulence.

3 Nonlinear Simulation of ETG Turbulence

The gyrokinetic PIC simulation is performed for the nonresonant NS-ETG mode, which
gives the largest transport coefficient in Fig. 1(b). In the present study, a simulation model with
single helicity perturbations and an adiabatic ions is used to reduce a simulation cost.

In Figs. 2(a)-2(d), contour plots of the electrostatic potential are shown for the simulation of
the nonresonant NS-ETG mode withηe = ηi = 5 andLne/Lns∼ 0.430. In the linear phase for
tΩi = 0∼ 1100 [see Fig. 2(a)], the radially elongated vortex structure appears. Theky spectrum
in Fig. 3(a) peaks atkyρ̄te = 0.258 where the maximum linear growth rate is given in Fig. 4(a).
The broad radial eigenmode structure is a characteristic feature of the NS-ETG modes which
becomes unstable around theqmin-surface.

A saturation of the nonresonant NS-ETG mode occurs aroundtΩte ∼ 1100. In the initial
saturation phase [see Fig. 2(b)], the radially elongated vortices are broken into small scale
and almost isotropic eddies. A destruction of the radially elongated vortices is caused byE×B
shear flows withky∼ 0, which is generated by a local charge separation arising from the electron
particle transport. This process is recognized as a normal cascade in thekx space. In Fig. 3(a),
we see an inverse cascade process in theky space. These properties of the wave energy cascade
in a relatively long wavelength regime withk⊥ρte < 1 are consistent with a picture of a self-
organization process in the electrostatic drift-wave turbulence [9]. It is noted that through the
whole time evolution, a variation of the electron temperature is estimated asδTe/T0e ≤ 0.005.
A modification of the velocity distribution function due to a particle trapping is weak, because
of a small saturation amplitude witheφ/Te≤ 0.003 in the initial saturation phase. Therefore, an
important saturation mechanism is considered to be an inverse (normal) energy cascade process
in theky (kx) space which generatesE×B shear flows withky ∼ 0.

After the initial nonlinear saturation of the unstable ETG modes [see Fig. 2(c)], fortΩi =
1200∼ 2300, a low-ky secondary instability occurs in a linearly stable region in both sides of
the nonlinearly saturated region around theqmin-surface. The wave number of the secondary
instability is estimated askyρ̄te = 0.0859 in Fig. 3(b). This unstableky region can not be
explained by the linear growth rate of the ETG mode which peaks aroundkyλ̄De ∼ 1 (kyρ̄te ∼
0.3). Theky spectrum shown in Fig. 3(b) also shows the inverse energy cascade during the
evolution of the secondary instability. This inverse energy cascade process leads to a generation
of strongEr ×B zonal flows.

Finally, in the quasi-stationary phase aftertΩi ∼ 2400 [see Fig. 2(d)], the wave energy
condenses into theky = 0 mode, which means a formation ofEr ×B zonal flows. Then, the
expansion of the secondary instability region is suppressed. The observed radial profile of the
quasi-steadyEr ×B zonal flow is non-uniform and has a fairly large flow velocity (vEr×B ∼
0.015v̄t i andv̄t is the thermal velocity) only in finite magnetic shear regions in both sides of the
qmin-surface. Although an inverse energy cascade in theky space is observed both in the region
of theqmin-surface [see Fig.3(a)] and in the largeEr ×B zonal flow region [see Fig.3(b)], the
wave spectrum condensation into theky = 0 mode occurs only in the latter region. Since the
main difference between these two regions is the magnetic shear, we suppose that the magnetic
shear plays a significant role for sustaining theEr ×B zonal flows. In order to confirm this
conjecture, we will discuss about a stability of theEr ×B zonal flow from a point of view of the
K-H instability.



4 Stability of E×B Zonal Flow

In order to analyze a stability of theEr ×B zonal flows observed in the simulation, the
gyrokinetic integral eigenvalue code is extended to include an equilibriumEr ×B flow. Since
the scale length of flow shear is much larger than the electron Larmor radius,ρ̄te/Lv ∼ O(ε),
the gyroaverage for the radial electric fieldEr is ignored, and an effect of an equilibriumEr ×B
shear flow is easily incorporated as the Doppler shift for the eigenfrequency.

The stability condition for the K-H mode is estimated analytically by reducing the gyroki-
netic integral eigenmode equation into the Rayleigh equation [10] in the limit:k⊥ρte → 0,
Lne = Lni → ∞, Lte = Lti → ∞, Lns→ ∞, andn1i → 0, where the ion responsen1i is ignored
for simplicity [5]. In the Rayleigh equation, a non-dimensional parameter corresponding to the
Richardson number in a neutral fluid is given byJ = (k‖Lv/λ̄De)2/(kyv0/v̄te)2, wherev0 is a
characteristic flow velocity. For the flow profile ofvEr×B = v0 tanh(x/Lv), the marginal stabil-
ity condition is obtained asJ = k2

yL2
v(1− k2

yL2
v) [11]. From this condition, the K-H mode is

completely stabilized forkyLv > 1 andk‖Lv > (v0/v̄te)/(2
√

2Lv/λ̄De).
In the numerical calculation, we have chosen the modelEr ×B flow profile asvEr×B(x) =

v0[x−xc]/Lvexp{−([x−xc]/Lv)2/2+1/2}, wherex= xc is the neutral point of the flow profile.
A scale length of flow shear is chosen asLv ∼ 14.4ρ̄te based on the observedEr ×B zonal flow.
Above stability conditions are confirmed also in numerical results. In Fig. 4(a), the growth rate
spectrum of the K-H mode for the modelEr ×B flow profile withv0 = 0.02v̄t i andxc = 0 (xc is
at theqmin-surface) is shown. The unstableky region of the K-H mode exists in a lowky side
compared with that of the ETG mode, and this region corresponds to theky region where the
secondary instability occurs.

Since a stabilizing effect on the K-H mode is produced by a variation ofk‖, it is considered
that theEr ×B zonal flow profile is related to theq-profile. In Figs. 5(a)-5(d), we show time
histories of theEr ×B zonal flow profile in simulations of the nonresonant NS-ETG mode with
ηe = ηi = 5 and differentq-profiles. In the simulation withLne/Lns = 0 shown in Fig. 5(a),
quasi-steadyEr ×B zonal flows are not generated. Also for other three cases,Er ×B zonal
flows are not observed near theqmin-surface. In Figs. 5(b)-5(d), a clear correlation between the
Er ×B zonal flow profile and theq-profile is observed. The linear stability of the K-H mode
is analyzed for the configurations used for Figs. 5(b)-5(d). In Fig. 4(b), a criticalEr ×B flow
velocityv0c to stabilize the K-H mode is plotted for the modelEr ×B flow profiles with various
neutral pointsxc. This result explain the feature of theEr ×B zonal flow profile observed in
the simulation qualitatively. It is noted that a flow damping effect due to a dissipation such as
a Coulomb collision is not involved in the present simulation, because the growth time of the
ETG mode is shorter than that of the ITG mode. Therefore,Er ×B flows which are stable for
the K-H mode are sustained for a long time. The observed quasi-steady state withEr ×B zonal
flows is considered as a stable equilibrium solution of the gyrokinetic Vlasov-Maxwell system.

From obtained results, properties of the secondary instability are summarized as follows: (a)
the instability occurs in the neighborhood of theE×B shear flow orEr ×B zonal flow region, (b)
the most unstableky region,kyρ̄te∼ 0.1, is much lower than that of the ETG mode,kyρ̄te∼ 0.3,
(c) after the saturation of the instability, theEr ×B zonal flow is generated, provided thatk‖ is
sufficiently large, and (d) the instability propagates only in the weak magnetic shear region with
k‖ρ̄te < 10−5. From these properties, it is considered that the secondary instability is the K-H
mode, which becomes unstable in a front of theE×B shear flow orEr ×B zonal flow region.
The propagation of the secondary instability may correspond to an avalanche process produced
by a chain of the K-H instability and an associated generation of theEr ×B zonal flow.



5 Linear Stability of ITG Mode in ETG Turbulence

The last problem addressed in this work is a stability of the ITG mode in the presence of
the ETG turbulence. As is seen in Fig. 1, the linear growth rate of the ETG mode is an order
of magnitude larger than that of the ITG mode. In studying the ITG turbulence, it is necessary
to consider effects of the ETG turbulence even for the linear stability. In this paper, we study
an effect of theEr ×B zonal flow, which is generated from the ETG turbulence, on the ITG
turbulence. In this section, we consider the gyrokinetic ions under microscopic equilibrium
Er ×B zonal flows as a model configuration. It is noted that although simulations shown in Sec.
3 assume an adiabatic ion response, we have observed a generation ofEr ×B zonal flows also
in a simulation with the gyrokinetic ions.

For the gyrokinetic ions, the scale length ordering is estimated asρt i/Lv ∼ O(1), and the
FLR effect becomes important also for the equilibriumEr ×B shear flow. This treatment in the
gyrokinetic integral eigenvalue code becomes very complicated because a velocity integral of
the plasma dispersion function requires an integration also about the magnetic moment. Thus,
we have developed a new initial value code based on the gyrokinetic particle simulation tech-
nique. In order to treat the full FLR effect in the gyrokinetic particle simulation, we assign a
particle density and impose the consistency condition in the Fourier space where the FLR effect
is expressed analytically with the zeroth order Bessel function. As in the gyrokinetic integral
eigenvalue code, the gyrokinetic Poisson equation, which is formulated as an integral equation,
is solved in the Fourier space with retaining the full FLR effect.

The calculation is performed for thel = 0 branch of the double mode-rational surface NS-
ITG mode with the same parameters as in Fig. 1. In the linear calculation of the ITG mode,
electron modes are ignored by assuming the adiabatic electron response. A modelEr ×B zonal
flow profile is chosen as the sinusoidal function,vEr×B(x) = v0sin([π/2Lv]x), where the flow
shear parameter isLv ∼ 16.7ρ̄te (ρ̄t i/Lv ∼ 4.59). Figures 6 shows thev0-dependence of the
eigenfrequency. While the real frequency is insensitive to a change inv0, the microscopic
Er ×B zonal flow is remarkably effective for stabilizing the NS-ITG mode. The marginally
stable condition is given in a very smallEr ×B flow velocity with v0/v̄t i ∼ 0.005. In order to
understand the stabilizing mechanism, the resonance condition,|k‖|vti/|Re(ω)−ky〈vEr×B〉θ̄|, is
plotted for the cases with and without theEr ×B zonal flow in Fig. 7, where the gyro-average is
evaluated for thermal ions,〈vEr×B〉θ̄ = v0sin([π/2Lv]x)J0([π/2Lv]ρt i). Since the real frequency
is almost constant, the resonance condition is not changed on average. However, in a wide
range of the unstable region around theqmin-surface, the local resonance condition is shifted
from the most unstable condition due to the Doppler shift with the microscopicEr ×B zonal
flow. This property that the resonance condition is shifted without changing the real frequency
is a unique stabilizing mechanism of the microscopicEr ×B zonal flow. It is noted that such a
strong stabilizing effect can not be expected for the globalEr ×B shear flow, because the real
frequency is also shifted to sustain the instability.

6 Discussion

In this work, we have analyzed linear and nonlinear properties of micro-instabilities partic-
ularly for the negative shear configuration, based on the gyrokinetic theory. Linear calculations
show that in a weak magnetic shear region around theqmin-surface, the NS-ETG and NS-ITG
modes become strongly unstable, and their transport coefficients based on the mixing length
theory are an order of magnitude larger than those obtained in the normal shear configuration.
This result suggests a possibility of a large electron anomalous transport in the ITB region based



on the ETG mode.
In nonlinear simulations of the ETG turbulence, a formation ofEr ×B zonal flows due to an

avalanche process of the K-H like secondary instability and an inverse wave energy cascade is
observed. From stability analyses of the observedEr ×B zonal flow, it is found that a final state
of theEr ×B zonal flow profile is determined by a stability of the K-H mode. Linear calculation
of the ITG mode under a modelEr ×B flow show that, if the ETG driven microscopicEr ×B
zonal flows are sustained for a long time, the ITG turbulence is easily suppressed. Therefore, it
is considered that the ETG turbulence play a significant role in determining a transport property
in the ITB region of negative shear tokamaks.
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FIG 1: (a) The growth rate spectra of the slab ETG
and ITG modes withηe = ηi = 5. (b) The corre-
sponding transport coefficients estimated from the
mixing length theory. Wavenumbers are chosen so
that the criticalηi (= ηe) becomes an minimum
value.

FIG 2: Contour plots ofφ are shown for the simu-
lation of the nonresonant NS-ETG mode withηe =
ηi = 5 andLne/Lns ∼ 0.430. Theqmin-surface is
x/ρ̄te = 0.

FIG 3: Time histories ofky wave energy spectrum
observed in the simulation shown in Fig. 2. The
observation regions are set for (a)x/ρ̄te =−146.2∼
146.2 and (b)x/ρ̄te = −361.1∼ −287.9.
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Lne/Lns = 0.430. (b) The criticalEr ×B flow ve-
locity v0c of the K-H mode for the negative shear
configuration in Figs. 5(b)-5(d).



FIG 5: Time histories of the radial distribution ofvEr×B observed in the simulation of the nonresonant
NS-ETG mode with (a)Lne/Lns = 0, (b)Lne/Lns= 0.304, (c)Lne/Lns = 0.430, and (d)Lne/Lns= 0.609.
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