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Abstract. Large scale transport events are studied using two different three dimensional
simulation codes related to resistive ballooning and ion temperature gradient turbulence.
The turbulence is driven by a constant incoming flux. In the case of resistive ballooning
simulations, the underlying structures are found to be radially elongated at the low field
side, and distorted by magnetic shear in parallel direction (streamers). The non linear
character of these structures is emphasized. Bursty transport is investigated in presence
of zonal flows and internal transport barriers generated either by a strong shear flow or
with a magnetic shear reversal. Finally, a low dimensional model that captures the main
features of bursty transport dynamics is derived.

1. Introduction

Recently, many self-consistent − in the sense that neither spatial nor time scale separabil-
ity between the fluctuations and the equilibrium is assumed − fluid models of threshold
plasma turbulence have shown that the radial transport exhibits intermittent ballistic
bursts corresponding to large radial scale tranport events [1, 2, 3, 4, 5, 6]. Also, ex-
perimental measurements of tokamak turbulence show evidence of intermittent transport
[7, 8], together with scale invariance in time of the fluctuations [9]. They might be good
candidates to explain fast transients [10]. A single structure of this sort is suggested to
be a radially extended, poloidally localized convective cell called a streamer [11, 12]. Let
us emphasize that this bursty transport is oberved in systems driven at constant flux. In
the present study, this flux driven turbulence is investigated with a 3-D global code of ion
temperature gradient turbulence [13, 1] and with a 3-D global code computing resistive
ballooning modes which involve a critical pressure gradient length [3]. These codes yield
a consistent description of transport processes from the small scale fluctuations to the
equilibrium profiles. Several issues are addressed here: the 3-D structure of the radially
elongated large scale transport event (streamer) and its non linear character; the influence
of zonal flows on the dynamics of these structures, the role of internal transport barriers
(ITB) generated either by a strong shear flow or with a magnetic shear reversal on these
transport events; and finally we derive a low dimensional model that captures the essential
of the dynamics of the bursts.

2. Identification and characterization of large scale transport events

We use simulations of resistive ballooning turbulence at the plasma edge to investigate the
three dimensional structure of the bursts. The turbulence is driven by a constant incoming
flux. The model consists of two equations for the vorticity and pressure, respectively. The



normalized form of these equations is [14, 15]

d

dt
∇2
⊥φ = −∇2

‖φ−Gp+ ν∇4
⊥φ , (1)

dp

dt
= χ‖∇2

‖p+ χ⊥∇2
⊥p+ S . (2)

Here, d/dt = ∂/∂t+ {φ, · }, where the Poisson bracket represents the convection due to

the ~E × ~B flow. Note that the aim of this work is to study basic dynamic processes in
3D turbulence at the plasma edge. Therefore, in this simplified MHD model, diamagnetic
effects and magnetic fluctuations are not included. Eqs. (1,2) describe the evolution
of the complete fields of potential and pressure, including equilibrium and fluctuations.
Expanding the fields φ and p into Fourier series in the poloidal (mode number m) and
toroidal (n) directions, each Fourier mode is localized in the vicinity of its resonant surface
x = xq=m/n. The simulation region is restricted to the domain between the q = 2 and
q = 3 surfaces at the plasma edge.

Following the time evolution of the radial pressure profile, large bursts are observed alter-
nating with quiet periods, as illustrated in Fig. 1. One observes both low pressure events
traveling inwards and high pressure bursts propagating in the outward direction. Note
that the early times shown in Fig. 1 correspond to a transient phase where the mean
pressure gradient has not yet reached a statistically stationary state. In this phase, many
large bursts are observed. From Fig. 1, it is possible to determine a time when a large
burst appears. To investigate the 3D structure of this burst, the spatial distribution of
the turbulent radial flux is analyzed at that specific time. A dominant structure corre-
sponding to a strong local maximum of the flux is observed. At the low field side, this
structure is highly elongated in the radial direction which suggests its interpretation as a
streamer.
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Figure 1: Time evolution of the magnetic surface averaged pressure profile (isobares in the
(x, t)–plane).In this case, zonal flows are suppressed.

To illustrate this, Fig. 2 shows the contours of the turbulent radial flux in a small section of
the poloidal plane, at the toroidal position where the structure passes at the low field side.
In the toroidal direction, the maximum of the flux follows the local magnetic field line
at each radial position, which results in a strong distortion due to magnetic shear. This



indicates that structures and magnetic shear are not incompatible. Since the modulational
structure drive has ballooning character, the streamer can adjust to the magnetic shear.

Figure 2: Radially elongated structure (streamer) of the turbulent radial flux in a section (at
the low field side) of a poloidal plane.

To distinguish between a possible linear or nonlinear character of the structure, the
toroidal wavenumber spectrum of the corresponding kinetic energy is calculated and plot-
ted in Fig. 3. It shows that the streamer is composed of a large (∼ 10) number of modes
with different toroidal wavenumbers n and is therefore clearly different from a linear bal-
looning mode that is characterized by a single wavenumber n [16]. Therefore, there is a
strong evidence that the generation of streamers is an intrinsically multimode nonlinear
process rather than a secondary instability of a purely linear eigenmode flow.
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Figure 3: Kinetic energy of the fluctuations as a function of the toroidal wavenumber, at the
same time as in Fig. 2

3. Interplay of zonal flows with streamers

In the previous simulations, the generation of zonal flows has been artificially suppressed.
In order to study the influence of these flows on the large scale transport events, sim-
ulations including self consistently generated zonal flows are performed. The frequency
of appearance of bursts is found to be remarkably higher compared to the previous case



(Fig. 1). On the other hand, the amplitudes of single events are lower. More precisely, the
spectrum of the turbulent radial flux at a given radial position exhibits a 1/f decrease
in a range of intermediate frequencies [17, 1, 2] up to a certain cutoff, and the latter
is extended to higher frequencies when zonal flows are included. This behavior can be
understood analyzing the time evolution of the velocity shear at the same given radial
position. When a burst is building up, the velocity shear starts growing after a short time
delay, inhibiting the flux to grow to large amplitudes. This is due to the decorrelation
of the radially elongated structures by the shear stress (Fig. 4). The cross correlation
function of the turbulent radial flux and the velocity shear shows a maximum at a time
delay of the order of 20 time units. This corresponds roughly to the cutoff in the frequency
spectrum mentioned above.
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Figure 4: Cross correlation between the radial turbulent flux and the velocity shear at a given
radial position.

The change in the frequency spectrum is in perfect agreement with the one observed in Ref.
[18] in the running sandpile model. There, a suppression of the low-frequency components
and an increase of the high-frequency parts are observed. Here, the simulations presented
so far confirm the increase at high frequencies in the presence of zonal flows. As will be
shown now, the decrease at low frequencies is due to a region with strong mean shear that
is investigated in Ref. [18].

4. Bursty transport with internal transport barriers

An interesting question is the behavior of the large scale events in presence of an ITB.
It was postulated that a strong shear flow should prevent the propagation of such events
[19, 17, 18]. Therefore, a simulation is performed, imposing a sheared equilibrium rotation
at the vicinity of the x = 0 surface. The velocity shear is five times larger than those
generated by the turbulence in the previous simulation. In this case, a transport barrier
builds up in the shear region, characterized by a strongly reduced turbulent radial flux
(Fig. 5).

Bursts are still observed in this region, but their amplitudes are very small, and coming
from both sides of the barrier, they almost vanish in the center. However, some pertur-
bation travel through the barrier, as shown by recent simulations [20]. The frequency of
appearance of bursts is even higher than in the previous case. In fact, the reduction of



Figure 5: Time evolution of the magnetic surface averaged turbulent radial flux in the case with
externally imposed strong shear flow [minimum = -0.1 (black), maximum = 3.8 (white)].

turbulent transport is found to be due to the suppression of low frequency components
in the turbulent flux. As the time averaged total radial flux is constant, the transport in
the barrier region must be approximatively neoclassical. In fact, a large pressure gradient
builds up in this region. Note that the character of the bursts inside the barrier is close
to that of a quasi-coherent oscillation.

Furthermore, ITG simulations show that with a magnetic shear reversal, an internal
transport barrier builds up together with a strong ExB shear flow (Fig. 6). This supports
the idea that within an ITB, turbulence is suppressed by a combination of EXB shear
flow and a magnetic shear.

It is observed in this case that the events hardly cross an ITB. This is consistent with a
shearing by the ExB flow in the barrier. Let us note that the biggest events do cross the
barrier. However the frequency power spectrum of the turbulent flux exhibits the same
shape inside and outside the ITB while only the amplitudes of the events change. This
seems to differ from the previous case of resistive ballooning turbulence where the barrier
was produced with an externally driven velocity profile. The reason seems that there
are still bursts inside the barrier although their amplitude is low. The interplay between
bursts outside and inside the ITB is still under investigation, Let us note that the barrier
width also exhibits a complex behavior and that it is probable that zonal flows do affect
this dynamics.

5. Low dimensional model for bursty transport

We propose a one dimensional (1-D) simplified model to investigate transport in turbulent
systems driven by a fixed flux. We use a Galerkin projection to derive a low dimensional
system that accounts for the dynamical properties of the bursts. This model relies on
the possibility of generation of a mean poloidal ExB velocity field and its back reaction
on fluctuations. In the present model, the production of this mean shear flow is a direct
consequence of turbulence-induced Reynolds stress. The model is inferred from a 2-D
interchange turbulence (equivalent to the resistive ballooning in the region located after
the last closed magnetic surface) [4].
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Figure 6: 3D global simulations of ITG turbulence in presence of a magnetic shear reversal. a)
q profile. Points are the positions of resonant surfaces. b) Ion temperature profile. c) Radial
profile of the mean ExB flow shear.

In deriving the reduced model, we focus on the 2-D interchange instability system. The
interchange modes are unstable when the average magnetic field lines curvature is in
opposite direction to the pressure gradient. In the flute approximation, neglecting the
stabilizing effect of the sheath conductivity and taking cold ions population, the two
dimensional non linear evolution of the normalized density and electric potential is given
by:

d

dt
∇2
⊥φ = −g

n

∂n

∂y
+ ν∇4

⊥φ , (3)

d

dt
n = D∇2

⊥n+ S . (4)

This system is analogous to the Rayleigh-Benard convection with n standing for the
temperature field and φ for the stream function.

Let us expand the density and electric potential fields in the following way:

n(x, y, t) = n̄(x, t) + ñ(x, y, t) (5)

φ(x, y, t) = φ̄(x, t) + φ̃(x, y, t) (6)

where n̄ and φ̄ are equilibrium quantities averaged along the poloidal direction. The
average φ̄ will further be responsible for the development of a mean flow. So as to reduce
the problem to one dimension we expand the poloidal variation of fluctuating quantities in



Fourier series up to the first harmonic of the most unstable mode ky (Galerkin projection).

φ̃(x, y, t) = eiky ·yφ1(x, t) + cc (7)

ñ(x, y, t) = eiky ·yn1(x, t) + cc (8)

where cc stands for complex conjugate.

Equations for the evolution of the mean and fluctuating fields read:

∂tñ = −ikñ∂xφ̄+ ikφ̃∂xn̄+D∂xxñ (9)

∂tφ̃ = −ikφ̃∂xφ̄+
igñ

kn0

+ ν∂xxφ̃ (10)

∂tn̄ = ik∂x
(
ñ∗φ̃− ñφ̃∗

)
+D∂xxn̄+ S (11)

∂t∂xφ̄ = ik∂x
(
φ̃∂xφ̃

∗ − φ̃∗∂xφ̃
)

+ ν∂xxxφ̄ (12)

We have solved these equations numerically. The source term in the equations is taken
gaussian shaped and represents the driving energy sustaining a mean density gradient.
In this model, the Reynolds stress is reponsible for the generation of a mean zonal flow.
Fig. 7 shows the mean velocity profile in which a zoning is observed. By decreasing the
dissipation coefficients we were able to increase the number of zones as in Ref. [21]. We
observe that propagating bursty events are superimposed to these zonal flows. We found
that the latter are necessary to trigger the bursts. In absence of ExB velocity shear, it is
impossible to observe large scale transport events in this model.

Figure 7: Time averaged radial velocity profile.

Conclusions

Three dimensional simulations of resistive ballooning turbulence at the plasma edge and
ITG simulations have shown evidence of large scale transport events. The analysis of the
3D structure of these bursts shows that they are highly radially elongated on the low field
side and localized along magnetic field lines. The streamer is found to be generated by
an intrinsically nonlinear process. Self generated zonal flows inhibit the growth of bursts,
reducing their amplitude and increasing the frequency of appearance. In the presence of a
transport barrier generated by a strong shear flow, the amplitudes of bursts almost vanish
in the center of the barrier.
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