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Abstract. The ideal MHD stability analysis of high-n (n is the toroidal mode number) Toroidal Alfv´en Eigenmodes

(TAE’s) is presented, using realistic and completely general ITER equilibria with shaped, up-down asymmetric,

magnetic flux surfaces. An approach has been used, based on analytical-theoretical methods, which can give

interesting results and allows us to analyze the conditions for enhanced TAE damping (although preventing us

from computing the excitation thresholds). The frequency spectrum of TAE modes is found by solving the fully

two dimensional problem using a two spatial-scale WKB formalism. The phase space integration is extended to a

complete periodic orbit (at fixed frequencyω) in the(r,θk) phase-space (r is here a general flux coordinate andθk

is the WKB eikonal entering in the expression of the radialenvelope of the mode). The equilibria, analyzed here,

are characterized by ideal TAE’s localized in the half outer part of the plasma column, where theα -particle drive

is expected to be small and modes are likely affected by continuum damping.

1. Introduction

It can be shown that the most unstable Alfv´en modes in a tokamak reactor will be typically
characterized by mode numbersn in the range 1� εa/ρLE

<∼ n <∼ a/ρLE , with ε ≡ a/R0 (a
andR0 being, respectively, the minor and major radius of the torus) andρLE the energetic par-
ticle (e.g.,α -particles) Larmor radius [1]. The energetic particle drive is, in fact, proportional
to the pressure gradient, and the instability growth-rate scales with the diamagnetic drift fre-
quencyω∗pE ∝ n: modes with high mode numbern will then be favorite. The range of toroidal
mode numbers expected to be significative in an tokamak reactor derive from having Larmor
radius and drift orbit widths of the energetic particles smaller or approximately equal to the
poloidal wavelength (ρLE

<∼ k−1
θ ≈ a/n, to avoid mode-particle detuning) and simultaneous-

ly larger or comparable with the radial wavelength (ρLE
>∼ k−1

r ≈ εa/n) [1] to maximize the
ballooning-interchange drive due to the geodesic curvature term. The large mode numbern cre-
ates serious resolution problems for conventional numerical codes, whereas an approach based
on analytical-theoretical methods can overcome these difficulties. Previous analyses, using a
2D-WKB code [2], have studied this problem either for (s,α ) model equilibria (s is the magnet-
ic shear andα = −q2R0β ′) and, more recently, for realistic equilibria [3]. In the former case,
the simple equilibrium model allowed us to retain the details of the energetic particle dynamics,
and thus, to explore the destabilization mechanism due to wave particle interactions. In the latter
case, a more complete description of the equilibria was studied instead, at the price of neglecting
energetic particle drive and all wave-particle resonant interactions; i.e., only marginally stable
ideal global modes have been studied: this is the case considered here for the RTO/RC-ITER.
Previous analyses have shown that TAE’s can be shifted downward in frequency by finite-β
effects and out of the toroidal frequency gap in the Alfv´en continuum. As a consequence, the
so-called continuum damping strongly increases, and these modes are expected to be stable also
in presence of an energetic particle drive. The ideal MHD stability analysis, performed here,
using a realistic equilibrium, can give interesting results and allows us to analyze the conditions
for enhanced TAE damping (although preventing us from computing the excitation thresholds).



2. Theoretical Model

Here, frequencies are normalized to the Alfv´en frequency on axisωA ≡ B0/R0

√
4πρ0, and a

plasma density profileρ = ρ0
√

1−ψ has been assumed.

The frequency spectrum of TAE modes is found by solving the global dispersion relation [4]
∮

dθknq[r(θk;ω)] = π(2l +w) , (1)

whereθk ≡ kr/nq′ is the WKB eikonal entering in the expression of the radialenvelope of the
mode [4] (kr is the radial wave vector,q is the safety and the prime′ indicates derivation with
respect to the (radial) flux coordinater), l is the radial mode number,w is the Maslov index
(defined in the following) andω is the mode frequency. The WKB eikonalθk is a function of
the radial position, as it may be obtained from the solution of the local TAE dispersion relation

F
(
r,θk;ω

)
= 0 , (2)

which is parameterized by the mode frequencyω. Furthermore, the integration in Eq. (1) for
solving the global dispersion relation is extended to a complete periodic orbit (at fixedω) in
the (r,θk) phase-space, andw is eitherw = 0 for phase-space rotations orw = 1 for phase-
space oscillations. Incidentally, we note that, in the up-down asymmetric equilibria considered
here,θk = 0 andθk = π are not WKB turning points – as in the general symmetric case – and
that turning point positions need to be determined numerically from Eq. (2) with the condition
∂F/∂θk = 0.

3. ITER Equilibria

Here, a method of solution different from that used in ref. [3] has been used. In particular, a
map of the functionω = ω(r,θk), as obtained from the solution of the local dispersion relation,
Eq. (2), has been calculated. Typically, the functionω = ω(r,θk) is multivalued, and several
surfaces can be identified in the space(r,θk,ω) (see, e.g., FIG. 1, where two of such surfaces
are reproduced together with the surfaces corresponding to the Alfv´en continua).

The global dispersion relation, Eq.(1), is obtained by integrating along the equi-ω contours in
the plane(r,θk), shown on the top of FIG. 1. The equilibria analyzed so far (standard monotonic
q-profile RTO/RC-ITER IAM scenarii as provided by the “Plasma Equilibrium and Control
Group, Plasma and Field Control Division, ITER EDA”) are characterized by ideal TAE’s which
are localized in the half outer part of the plasma column (see, e.g., FIG. 2, where the ideal MHD
global TAE mode frequency spectrum and radial localization are shown forn = 20 and the
equilibriumsob13.3-l11-b085-iam.1, corresponding to the two surfacesω = ω(r,θk) shown in
FIG. 1). Several modes have at least one turning point very close to the (upper or lower) Alfv´en
continuum spectrum and, thus, are likely to suffer strong continuum damping. Other modes are
well inside the toroidal gap and, thus, in principle could be easily driven unstable.

It is interesting to determine the toroidal mode numbern above which the most dangerous modes
(i.e., the ones which lie well inside the toroidal gap) appear. Focalizing on the modes shown
in FIG. 1, solutionωa, the very localized mode atω/ωA ≈ 0.62 (radial mode numberl = 19
for n = 20, see FIG. 2, and corresponding to a phase-space rotationw = 0) appears for toroidal
mode numbern ≥ 17. The radially extended mode atω/ωA ≈ 0.6 (radial mode numberl =−1
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FIG. 1: The surfaces representing two solutions ωa = ω(r,θk) (left) and ωb = ω(r,θk) (right) (trans-
parent grid and colored contour plot of it on top) as obtained by Eq. (2), for a portion of radius
r = 0.45÷0.96, and θk/π = −1÷1. Lower and upper continua are represented by gray surfaces.

for n = 20, see FIG. 2, and corresponding to a phase-space oscillation w = 1) appears for n ≥ 9.
Finally, let us consider the modes with lower frequencies (0.44 <∼ ω/ωA

<∼ 0.57, radial mode
number l = 23÷34 for n = 20, see FIG. 2, and corresponding to phase-space rotations w = 0):
these modes appear for n ≥ 2 (n ≥ 4 if modes with turning points clearly detached from the
lower continuum (ω/ωA

>∼ 0.54) are considered) and become denser and denser in frequency
as the toroidal mode number increases. For n = 10 already, the difference in frequency between
modes with different radial mode numbers is ω/ωA ≤ 0.02. It has to be noted, nevertheless,
that all these modes exist at a radial position where the energetic α -particle drive is expected to
be small.

On the other hand, the gap structure of the reversed shear equilibria for similar scenarii are
characterized by a much narrower extension in radius and, thus, by TAE’s (if they exist) with a
smaller radial extension.
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FIG. 2: Ideal MHD global TAE mode frequency spectrum for n = 20 and the equilibrium sob13.3-l11-
b085-iam.1 and relative, respectively, to the surface ωa (left) and ωb (right) (see FIG. 1). The radial
mode number l, the Maslov index w and the toroidal gap boundaries are also shown.
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FIG. 3: Ideal MHD global TAE mode frequency spectrum an function of the toroidal mode number n for
the equilibrium sob13.3-l11-b085-iam.1 and relative to the surface ω a (see FIG. 1). The Maslov index w
and the radial mode number l as the mode appears are also shown.


