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Abstract. The dependence of edge stability on plasma shape and local pressure gradients, P′, in the DIII–D and
JT–60U tokamaks is studied. The stronger plasma shaping in DIII-D allows the edge region of DIII-D
discharges with Type I (“giant”) ELMs to have access to the second region of stability for ideal
ballooning modes and larger edge P′ than JT-60U Type I ELM discharges. These JT-60U discharges
are near the ballooning mode first regime stability limit. DIII–D results support an ideal stability based
working model of Type I ELMs as low to intermediate toroidal mode number, n, MHD modes. Results
from stability analysis of JT-60U Type I ELM discharges indicate that predictions from this model are
also consistent with JT–60U edge stability observations.

1. Introduction and Overview

Two of the major issues in the design of future tokamak devices are the predictability of the
edge pedestal height and control of the divertor heat load in H-mode discharges. Both of these
are strongly influenced by edge stability. In H-mode discharges, edge instabilities (ELMs) are
often present, driven by the large edge pedestal pressure gradient P′, which is associated with
the improved edge confinement, and the corresponding large edge bootstrap current density
JBS, The predicted performance of future tokamak devices is sensitive to the magnitude of the
edge pressure pedestal assumed in the transport simulations. An improved understanding of
edge instabilities will provide a more accurate prediction of future device performance.

In this paper, the dependence of edge stability on plasma shape and local P′ in the DIII-D and
JT-60U tokamaks is studied. Discharge shaping provides a powerful tool to test and validate
ELM models by varying the stability properties of the plasma edge. DIII-D discharges have
high elongation κ  ≥ 1.8 and a wide range of values of δ, and squareness (ξ) is possible. JT-
60U discharges have moderate κ  ~ 1.4 and low to moderate δ < 0.55. The stronger plasma
shaping in DIII-D allows the edge region of DIII-D discharges with Type I (“giant”) ELMs to
have access to the second region of stability for ideal ballooning modes and larger edge P′
than JT-60U Type I ELM discharges. These JT-60U discharges are near the  ballooning mode
first regime stability limit. Stability analyses and observations from DIII-D edge stability
experiments [1,2] support an ideal stability based model of Type I ELMs as low to interme-
diate toroidal mode number, n, kink/ballooning modes. In this model, second stability access
plays a supporting role by facilitating the buildup of the edge P′ and JBS, which then drives
lower n MHD modes [3,4]. The ELM amplitudes are assumed to be determined by the radial
width of the unstable modes. Predictions from this model are consistent with many observed
features of DIII-D edge stability experiments, as well as the observed increase of edge P′ with
δ in DIII-D and other tokamaks [4-7]. Although second ballooning stability access is a dis-
tinguishing feature of this model, it is not a necessary element of this model. With low edge



safety factor q95, weak shaping, and large pedestal width, low to intermediate n
kink/ballooning modes can become unstable at low edge P′.

JT-60U edge stability results provide an interesting test of this ELM model. In JT-60U dis-
charges with moderate δ ~ 0.45 and low q95 ~ 3.4, Type I ELMs are observed. The edge
region of these discharges is found to have no access to the second region of stability for ideal
ballooning modes. The edge P′ is near the first ballooning stability limit. In discharges with
similar δ but higher q95 ~ 6 obtained by increasing the toroidal magnetic field, the edge P′
remains similar but the ELM amplitudes are strongly reduced and the frequency is strongly
increased [8,9]. The edge region of these small amplitude “grassy” ELM discharges is found
to have access to the second region of stability for ideal ballooning modes. Although these JT-
60U edge stability results appear to be different from those of DIII-D, results from detailed
stability analysis indicate that they are consistent with the predictions from the working ELM
model. Ideal stability analysis based on experimentally reconstructed as well as simulated
equilibria indicates that the low q95 ~ 3.4 JT-60U discharges are marginally stable to the
intermediate n = 5-10 modes. A small increase in P′ will strongly destabilize these intermedi-
ate n modes. The high q95 ~ 6 JT-60U discharges are stable to these intermediate n = 5-10
modes. This suggests that in the high q95 ~ 6.0 case the unstable modes may have n > 10.
Modes with higher n  are expected to be more localized due to shorter wavelength and will
perturb a smaller edge region.

In Section 2, edge stability in DIII-D is discussed. The ideal stability based Type I ELM
model as low to intermediate n MHD modes is introduced. Edge stability in JT-60U is dis-
cussed in Section 3. Finally, a discussion and a summary are given in Section 4.

2. Edge Stability in DIII-D

Stability analyses and DIII-D edge stability experimental results [1,2], particularly those from
the DIII-D experiments varying the squareness parameter, suggest an ideal stability based
working model of Type I ELMs as low to intermediate n kink/ballooning modes [3,4]. In this
model, the main driving forces for the instability are the edge P′ and the edge current density,
which interact through the edge bootstrap current density JBS and its effects on the second
ballooning stability access. The ELM amplitudes are assumed to be determined by the radial
width of the unstable mode. This is illustrated in Fig. 1, where a schematic drawing of the
stability boundaries in the H-mode pedestal region for three different DIII-D discharge shapes
with moderate to high squareness are shown in ( ′Pedge , n) space [4]. When the discharge shape
has high squareness, the edge region has no second ballooning stability access and the critical

′Pedge  is set by the first ballooning stabil-
ity limit for the highest n not stabilized
by finite Larmor radius (FLR) effects.
As squareness is reduced, the higher n
modes become second stable and the
critical ′Pedge  is set by the highest n
mode without second ballooning sta-
bility access, as indicated schematically
in the diagram. The amplitude of the
unstable mode also increase as square-
ness is reduced. This is due to both the
increase of ′Pedge  and an increase in the
radial width of the mode at smaller n.
Thus, as squareness is reduced, ELM
amplitudes are expected to increase as
observed experimentally.

The low/intermediate n ≤ 10 branch of
this diagram can be quantitatively evalu-
ated using the ideal stability code GATO
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Fig. 1. A schematic drawing of the stability
boundaries in the H-mode pedestal region for 3
different discharge shapes with moderate to high
squareness.



[10], although it is computationally expen-
sive. This is illustrated in Fig. 2 for a moder-
ate squareness DIII-D discharge with Type I
ELMs, where the critical ′Pedge  for instabil-
ity is shown as a function of n   =
1-10 computed using model equilibria based
on the experimental discharge [4]. As shown
in the figure, for this configuration the criti-
cal ′Pedge  is set by modes with the highest n
without second ballooning stability access.
The perturbation pattern and the radial
structure of the unstable n = 10 mode are
given in Fig. 3. As shown in the figure, the
mode has a large peeling component local-
ized in the edge region ψN ~ 0.8-1.0. Here
ψN is the normalized enclosed poloidal flux.
This high resolution grid point requirement
makes the stability analysis of these edge
modes computationally very expensive. A
typical analysis of a n = 10 mode with 400 x
800 radial and poloidal grid points can con-
sume more than 100 hours of CPU time on a
300 MHz Cray SV1 computer. A new bal-
looning representation has been implemented
into GATO to reduce the poloidal grid point
requirement. Initial results indicate that with
this representation the number of poloidal
grid points required to properly identify an
unstable mode can be reduced [11].

One of the distinguishing features of this
working ELM model is the second balloon-
ing stability access in the edge region for the
high n modes. This is illustrated in Fig. 4(a)
for a moderate squareness DIII-D discharge.
The edge pressure P and JBS from transport
analysis are shown in Fig. 4(b). As shown in
the next section, although edge second bal-
looning stability access is needed to allow
buildup of ′Pedge , it is not a necessary ele-
ment of this model. With low edge safety
factor q9 5  and weak shaping, the low to
intermediate n kink/ballooning modes can
still become unstable at low edge P′. These
high n ballooning modes are evaluated using
the BALOO code [12]. The ballooning and
peeling mode stability codes BALMSC, and
ELITE  are being improved to allow a more
quantitative evaluation of the intermediate
10 ≤ n ≤  40 branch of the stability diagram
shown in Fig. 1 [13].

3. Edge Stability in JT-60U

Recent JT-60U studies focus on the effects
of triangularity δ and edge safety factor q95
on the ELM character. Large amplitude, low
frequency ELMs (~100 Hz) are found to
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Fig. 2. Critical edge pressure gradient ′Pedge for
instability as a function of n computed using
model equilibria based on a moderate squareness
DIII-D discharge.
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Fig. 3. (a) Perturbation pattern and (b) radial
structure of an unstable n = 10 mode for a
moderate squareness DIII-D discharge.
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Fig. 4. (a) Ballooning stability boundary
for a  DIII-D moderate squareness dis-
charge with q95 ~ 3.4, (b) Edge pressure
and bootstrap current density.



disappear and small, high frequency “grassy” ELMs (~500-1000 Hz) to appear at sufficiently
large δ ≥ 0.45, q95 ≥ 5, and βP [8,9]. At intermediate δ and lower q95, the discharges are
observed to consist of mixtures of giant and grassy ELMs. This is illustrated in Fig. 5.
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Fig. 5. Change of ELM character with δ, q95, and βP  for a series of JT-60U discharges. Filled black
circles indicate giant ELM discharges, open circles indicate small amplitude “grassy” ELM
discharges, half-filled circles indicate discharges consist of mixtures of giant and “grassy” ELMs.

Ballooning stability analysis using equilibria accurately reconstructed using the EFIT code
[14] with kinetic profiles and MSE measurements shows that the edge region of the grassy
ELM discharges has second stability access. On the other hand, the results indicate that the
edge region of the giant ELM discharges is near the first stability limit. These are shown in
Figs. 6(a) and 6(b). This is in contrast to the DIII-D results. As shown in Figs. 4(a), 6(a), and
6(b), DIII-D discharges typically have larger edge P′ than JT-60U discharges. In the DIII-D
discharges, the edge region has access to the second ballooning stability regime and the large
edge P′ strongly exceeds the first ballooning stability limit in the neighboring surfaces.
However, in the JT-60U “grassy” ELM discharges, although there is second ballooning
stability access in the edge region, no substantial increase in edge P′ is observed.

The stability of these two JT-60U discharges
against the ideal low to intermediate n ≤ 10
modes is evaluated using the GATO code
[10]. To facilitate the analysis, experimental
as well as simulated equilibria based on the
experimental ones but with increasing pres-
sure are used to guide the analysis. The
results indicate that the low q95 ~ 3.4 dis-
charges are marginally stable to the n ~ 5-10
kink/ballooning modes. A small increase in
P′ can strongly destabilize these MHD
modes. When the pressure is increased by
20%, an n = 8 unstable edge mode can be
clearly identified. This is illustrated in
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giant Type I ELM and q95 ~ 3.4, (b) a JT-60U
discharge with “grassy” ELM and q95 ~ 6.0.

Fig. 7, where the perturbation pattern and the radial structure of the unstable n = 8 mode are
shown. The mode has a large edge component localized in the region ψN ~ 0.7-1.0. The com-
puted growth rates for this n = 8 mode are given in Fig. 8 as a function of the number of radial
and poloidal grid points used in the stability evaluation. Similar to the DIII-D case, the growth
rate first decreases and then increases with the number of grid points indicating this mode can
not be found with a coarse grid. The high q95 ~ 6.0 case shown in Fig. 6(b) is more stable than
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Fig. 7. (a) Perturbation pattern and (b) radial structure of
an unstable n = 8 mode for a JT-60U discharge with giant
Type I ELM and q95 ~ 3.4.

the low q95 ~ 3.4 case. Even with a 20% increase in
pressure, these n ~ 5-10 edge modes are still stable.
This suggests that in the high q95 ~ 6.0 case the
unstable modes may have n > 10. Modes with higher
n are expected to be more localized due to shorter
wavelength and will perturb a smaller edge region.

4. Summary
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Fig. 8. Computed growth rate for an
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DIII-D results support an ideal stability based working model of Type I ELMs as low to
intermediate toroidal mode number, n, MHD modes. Although more works need to be done to
further test and validate this ELM model, initial results from stability analysis of JT-60U
Type I and “grassy” ELM discharges are in support of this model.
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