Full Paper
Contents  Return  Previous Page  Next Page  Index

Return To: Session EX8 - Current Drive, Heating & Fuelling
Prev Page: (EX8/3) Reactor Relevant Current Drive and Heating by
Next Page: (EX8/5) Non-Inductive Current Generation in NSTX Using Coaxial

(EX8/4) The Performance of ICRF Heated Plasmas in LHD

T. Watari1), T. Mutoh1), R. Kumazawa1), T. Seki1), K. Saito2), Y. Torii2), Y. Zhao3), D. Hartmann4), H. Idei1), S. Kubo1), K. Ohkubo1), M. Sato1), T. Shimozuma1), Y. Yoshimura1), K. Ikeda1), O. Kaneko1), Y. Oka1), M. Osakabe1), Y. Takeiri1), K. Tsumori1), N. Ashikawa5), P. de Vries1), M. Emoto1), A. Fukuyama6), H. Funaba1), M. Goto1), K. Ida1), S. Inagaki1), N. Inoue1), M. Isobe1), K. Itoh1), S. Kado1), K. Kawahata1), T. Kobuchi1), K. Khlopenkov1), A. Komori1), A. V. Krasilnikov7), Y. Liang5), S. Masuzaki1), K. Matsuoka1), T. Minami1), J. Miyazawa1), T. Morisaki1), S. Morita1), S. Murakami1), S. Muto1), Y. Nagayama1), Y. Nakamura1), H. Nakanishi1), K. Narihara1), K. Nishimura1), N. Noda1), A. T. Notake2), S. Ohdachi1), N. Ohyabu1), H. Okada6), M. Okamoto1), T. Ozaki1), R. O. Pavlichenko1), B. J. Peterson1), A. Sagara1), S. Sakakibara1), R. Sakamoto1), H. Sasao1), M. Sasao5), K. Sato1), S. Satoh1), T. Satow1), M. Shoji1), S. Sudo1), H. Suzuki1), M. Takechi1), N. Tamura5), S. Tanahashi1), K. Tanaka1), K. Toi1), T. Tokuzawa1), K. Y. Watanabe1), T. Watanabe1), H. Yamada1), I. Yamada1), S. Yamaguchi1), S. Yamamoto2), K. Yamazaki1), M. Yokoyama1), Y. Hamada1), O. Motojima1), M. Fujiwara1)
1) National Institute for Fusion Science, 322-6 Oroshi-cho, Toki, 509-5292 Japan
2) Department of Energy Engineering and Science, Nagoya University, 464-8603, Japan
3) Institute of Plasma Physics, Academia Scinica, 230031, Hefei, Anhui, China
4) Max Planck Institute for Plasma Physics, D-85748,Garching, Germany
5) Department of Fusion Science, School of Mathematical and Physical Science, Graduate University for Advanced Studies, Hayama, 240-0193, Japan
6) Kyoto University, 606-8187, Kyoto, Japan
7) Troisk Institute for Innovating and Fusion Research(TRINITI), Troisk, Russia

Abstract.  An ICRF Heating experiment was conducted in the third campaign of the LHD in 1999. 1.35 MW of ICRF power was injected into the plasma and 200kJ of stored energy was obtained, which was maintained for 5 sec only by ICRF power after the termination of the ECH. The impurity problem was so completely overcome that the pulse length was easily extended to 68 sec at a power level of 0.7 MW. The utility of a liquid stub tuner in steady state plasma heating was demonstrated in this shot. The energy confinement time of the ICRF heated plasma has the same dependences on plasma parameters as the ISS95 stellarator scaling with a multiplication factor of 1.5, which is a high efficiency comparable to NBI. Such an improvement in performance was obtained by applying various measures, including 1)scanning of the magnetic field intensity and minority concentration, 2)improvement of particle orbit due to a shift of the magnetic axis, and 3) reduction of impurities by means of Ti-gettering and the use of carbon divertor plates. In the optimized heating regime, ion heating turned out to be the dominant heating mechanism, different from that of in CHS and W7-AS. Due to the high quality of the heating and the extended parameter range far beyond that of previous experiments, the experiment can be regarded as the first complete demonstration of ICRF heating in stellarators.

Read the full paper in PDF format.

IAEA 2001